

COMMON PKI SPECIFICATIONS
FOR INTEROPERABLE APPLICATIONS

FROM T7 & TELETRUST

 SPECIFICATION

INTRODUCTION

VERSION 2.0 – 20 JANUARY 2009

Common PKI: Introduction Version 2.0

Contact Information Common PKI Introduction – Page 2 of 12

Contact Information

The up-to-date version of the Common PKI specification can be downloaded from
www.common-pki.org or from www.common-pki.de
Please send comments and questions to common-pki@common-pki.org.

Editors of Common PKI specifications:

Hans-Joachim Bickenbach

Jürgen Brauckmann

Alfred Giessler

Tamás Horváth

Hans-Joachim Knobloch

The following people have contributed to the Common PKI Specification:

Harald Ahrens, Petra Barzin, Fritz Bauspieß, Andreas Berger, Hans-Joachim Bickenbach,
Jobst Biester, Jürgen Brauckmann, Detlef Dienst, Holger Ebel, Arno Fiedler, Dirk Fox,
Alfred Giessler, Ernst-Günter Giessmann, Volker Hammer, Tamás Horváth,
Karl-Adolf Höwel, Hans-Joachim Knobloch, Ulrike Korte, Rolf Lindemann, Dieter Pfeuffer,
Georgios Raptis, Helmut Reimer, Dieter Reul, Olaf Schlüter, Peter Schmidt,
Wolfgang Schneider, Josef Peter Winand, Klaus-Dieter Wirth and Eduward van der Zee.

© T7 e.V. and TeleTrusT e.V., 2002-2009

Common PKI: Introduction Version 2.0

Document History Common PKI Introduction – Page 3 of 12

Document History

VERSION
DATE

CHANGES

1.0
30.09.2001

First public edition

1.0.1
15.11.2001

A couple of editorial and stylistic changes:
• references to SigG-specific issues eliminated from core documents
• core documents (Part 1-7) and optional profiles have been separated in different

PDF documents.
1.0.2
19.07.2002

Several editorial changes. Part 5 has been added.

1.0.2
11.08.2003

Incorporated all changes from Corrigenda version 1.2

1.1
16.03.2004

Several editorial changes, and
• inclusion of new Part 8 on XML Signature and Encryption

2.0
20/Jan/2009

Name change from ISIS-MTT to Common PKI.
Update of document structure and renaming of some parts.

Common PKI: Introduction Version 2.0

Table of Contents Common PKI Introduction – Page 4 of 12

Table of Contents

1 Objectives.. 5

1.1 Common PKI Profiles International Standards ...5

1.2 The Scope of Common PKI...5

1.3 Some History ..6

2 Structure ... 8

3 Terminology and Notation .. 9

3.1 Support Requirements...9

3.2 Common PKI Conformance ...10

3.3 Notation...10

References... 12

Common PKI: Introduction Version 2.0

Structure Common PKI Introduction – Page 5 of 12

1 Objectives

1.1 Common PKI Profiles International Standards
IETF standards (RFCs) cover a wide variety of computer and communications applications
and provide great flexibility in technical aspects (communication protocols, data formats,
procedures etc.). For the realization of interoperable applications, the IETF standards may be
“too flexible”: at some aspects they offer too many implementation alternatives to choose
from, while some other aspects relevant for the specific application area may not be covered
by them.

The Common PKI Specification profiles the IETF standards, more closely the RFCs of the
PKIX and the SMIME working groups, as well as the technical specifications of W3C and of
ETSI to the needs of the intended application area: the secure exchange of emails and
documents combined with the use of qualified signatures. This tailoring is achieved by:

• specifying a selection of the numerous technical standards that are relevant for the target
application area and that are to be followed by implementers,

• restricting the possible implementation alternatives in order to promote interoperability as
well as to reduce the costs of implementation and conformity tests,

• it extends the international standards to cover specific needs or aspects that are not
covered by those standards, but that need regulation for the sake of interoperability.

1.2 The Scope of Common PKI

This Common PKI Specification describes data formats and communication protocols to be
employed in interoperable PKI-based applications. The specification focuses on security
services for authentication (including user identification and data integrity), confidentiality
and non-repudiation. The specification concentrates on interoperability aspects, embracing
different on- line services of certification service providers (CSPs), such as certification
service, directory service and time-stamp service, as well as client applications accessing and
relying on those services. As most important target application area, data formats for the
secure interchange of emails, XML documents and files via Internet are defined. A typical
set-up of PKI components with corresponding Common PKI documents is depicted in Figure
1. (Note that the presented components and respectively their partitioning into sub-modules,
such as OCSP server or signature creation module, are only an example. Real- life systems
may comprise different types of components and modules.)

The Common PKI specification intends to promote wide interoperability among client
applications and CA services, irrespective of the required security level; a characteristic
referred to as vertical interoperability. Accordingly, this version of the specification
concentrates merely on technical aspects (data structures, protocols, interfaces) and
consciously avoids prescribing any specific certificate policy to be applied in conjunction
with compliant systems.

Besides issuing this Common PKI Specification, testing facilities have been specified that can
be used to assess the conformity of components with the interoperability specification. This
Common PKI Test Specification describes a set of well-defined tests that provide reproducible
results and cover all aspects of the interoperability specification.

Common PKI: Introduction Version 2.0

Structure Common PKI Introduction – Page 6 of 12

1.3 Some History
Lots of efforts have been made in Germany to establish suitable public key infrastructures for
the secure interchange of emails and data files. Industrial companies and research institutes
have grounded the association TeleTrusT. The MailTrusT Working Group of TeleTrust has
developed a series of standards, called MailTrusT (MTT), to achieve interoperability among
email and file transfer client software and respectively CA services provided by the member
companies. The last version of MTT is MTT v2 [MTTv2], which was mainly used in health
care and governmental applications. Refer to www.teletrust.de for more information.

The “German Signature Act” (Signaturgesetz, SigG) defines the general framework for so-
called qualified electronic signatures that can be used in legal actions. SigG has been first
passed in 1997 and has been modified in 2001 [SigG01] to meet the requirements of the
“Directive 1999/93/EC of the European Parliament and of the Council of 13 December on a
Community Framework for Electronic Signatures” [ECDIR99]. The signature law and the
ordinance on its technical realization (Signaturverordnung, SigV [SigV01]) put very strong
security requirements on the entire public key infrastructure providing the means for the
signatures, i.e. on signature devices, signature software as well as CA services.

The GISA – German IT Security Agency (Bundesamt für Sicherheit in der
Informationstechnik, BSI) has issued a “Signature Interoperability Specification” (SigI),
promoting uniform signature and certificate formats for SigG-related applications. Parallel to
the efforts of TeleTrusT, companies providing qualified CA services have founded the
association “T7” and have issued their own standard, called “Industrial Signature
Interoperability Standard” (ISIS, [ISIS99]), which is an enhancement of a subset of SigI.
Refer to www.t7- isis.de for more information.

In 2001 TeleTrusT and T7 decided to transfer their technical specification into one common
standard, called ISIS-MTT, which is intended to promote wide interoperability among client
applications and CA services, irrespective of the required security level. ISIS-MTT should
serve as the common industrial standard. In 2008 ISIS-MTT was renamed to Common PKI;
the last version to be known under the old name is [ISIS-MTTv1.1].

Both ISIS 1.2 and MailTrusT v2 have been designed to conform to standards of the IETF,
especially to those of the PKIX and the SMIME working group. Hence, there are actually
only slight differences between the two and they can be made compatible without enormous
changes in data formats, equipment and software. The kernel part of Common PKI contains
specifications that provide international compatibility in the technical realization. In
particular, the Common PKI Specification is a profile to IETF standards as well as to
technical specifications of W3C and the European Telecommunications Standards Institute
(ETSI). ETSI standards regulate the implementation of qualified signatures and related
services, as laid down in the Directive 1999/93/EC. The SigG-Profile, an optional “sub-
profile” to Common PKI, implements specific requirements on signatures raised by the
German Signature Act and is intended for use only in this specific context.

In earlier versions of the specification (ISIS-MTT 1.0 to 1.1), the fact that a product or service
is not mandatorily required to comply with the requirements of the SigG sub-profile was
expressed by publishing the latter as an “Optional Profile” document, as opposed to the other
“Core Parts”. Meanwhile the compliance criteria for different products and services have been
defined in a separate Common PKI document. Hence the SigG Profile is maintained as
regular part of the specification since Common PKI 2.0. This change in document structure
does not imply that all Common PKI compliant products and services must now mandatorily
fulfil the requirements specified in the SigG (Sub-)Profile.

Common PKI: Introduction Version 2.0

Structure Common PKI Introduction – Page 7 of 12

client application

anotherCSPCertificationService Provider (CSP)

LDAP
server

OCSP
server

Time
Stamp

Service

client application
o fanother user

Mail Client
Application

File
Security

Application

certificates,
CRLs ,

cross-certs
(Part 1)

OCSP

Part 4

signed, encrypted emails

Part 3

signed,encrypted files

Part 3

LDAP

Part 4Certification
request

Part 2

TSP
Part 4

management protocols

Part 2
C A

Directory

XML
Client

Application

CA

signed, encrypted XMl documents

Part 8

Key and
Certificate

Management

Signature&
Cert.Path
Validation

Module

Validation
(Part 5)

Signature
Creation
Module

Signature Format
(Part 3,XML Part 8)

client application

anotherCSP

Common PKI
Signature API

CertificationService Provider (CSP)

LDAP
server

OCSP
server

Time
Stamp

Service

client application
o fanother user

Mail Client
Application
Mail Client
Application

File
Security

Application

File
Security

Application

certificates,
CRLs ,

cross-certs
Part 1

OCSP

signed, encrypted emails

signed,encrypted files

LDAP

Certification
request

TSP

management protocols
C AC A

Directory

XML
Client

Application

XML
Client

Application

File
Security

Application

Mail Client
Application

XML
Client

Application

File
Security

Application

File
Security

Application

Mail Client
Application
Mail Client

Application

XML
Client

Application

XML
Client

Application

CACA

signed, encrypted XMl documents

Key and
Certificate

Management

Signature
Creation

Part 3 Part 8

&
Cert Path

Signature

Validation

Part 5

Cryptographic
Library

Algorithms

Part 6

Part 7

Part 1

client application

anotherCSPCertificationService Provider (CSP)

LDAP
server

OCSP
server

Time
Stamp

Service

client application
o fanother user

Mail Client
Application
Mail Client
Application

File
Security

Application

File
Security

Application

certificates,
CRLs ,

cross-certs
(Part 1)

OCSP

Part 4

signed, encrypted emails

Part 3

signed,encrypted files

Part 3

LDAP

Part 4Certification
request

Part 2Part 2

TSP
Part 4

management protocols

Part 2
C AC A

Directory

XML
Client

Application

XML
Client

Application

CACA

signed, encrypted XMl documents

Part 8

Key and
Certificate

Management

Key and
Certificate

Management

Signature&
Cert.Path
Validation

Module

Validation
(Part 5)

Signature&
Cert.Path
Validation

Module

Validation
(Part 5)

Validation
(Part 5)

Signature
Creation
Module

Signature Format
(Part 3,XML Part 8)

Signature
Creation
Module

Signature Format
(Part 3,XML Part 8)
Signature Format

(Part 3,XML Part 8)

client application

anotherCSP

Common PKI
Signature API

CertificationService Provider (CSP)

LDAP
server

OCSP
server

Time
Stamp

Service

client application
o fanother user

Mail Client
Application
Mail Client
Application

File
Security

Application

File
Security

Application

certificates,
CRLs ,

cross-certs
Part 1Part 1

OCSP

signed, encrypted emails

signed,encrypted files

LDAP

Certification
request

TSP

management protocols
C AC A

Directory

XML
Client

Application

XML
Client

Application

File
Security

Application

Mail Client
Application

XML
Client

Application

File
Security

Application

File
Security

Application

Mail Client
Application
Mail Client

Application

XML
Client

Application

XML
Client

Application

File
Security

Application

File
Security

Application

Mail Client
Application
Mail Client

Application

XML
Client

Application

XML
Client

Application

File
Security

Application

File
Security

Application

Mail Client
Application
Mail Client

Application

XML
Client

Application

XML
Client

Application

CACA

signed, encrypted XMl documents

Key and
Certificate

Management

Key and
Certificate

Management

Signature
Creation

Part 3 Part 8

Signature
Creation

Signature
Creation

Part 3 Part 8

&
Cert Path

Signature

Validation

Part 5

&
Cert Path

Signature

Validation

&
Cert Path

Signature

Validation

Part 5Part 5

Cryptographic
Library

Algorithms

Part 6

Cryptographic
Library

Algorithms

Cryptographic
Library

Algorithms

Part 6

Part 7

Part 1Part 1

Figure 1: Overview of Common PKI and its relationship to interfaces among PKI

components (note that implementations may choose to selectively support
only a suitable subset of Common PKI data formats and interfaces)

Common PKI: Introduction Version 2.0

Terminology and Notation Common PKI Introduction – Page 8 of 12

2 Structure

The current version of the Common PKI Specification comprises the following Parts:
• Part 1: Certificate and CRL Profiles

• Part 2: PKI Management

• Part 3: CMS based Message Formats

• Part 4: Operational Protocols

• Part 5: Certificate Path Validation

• Part 6: Cryptographic Algorithms

• Part 7: Signature API

• Part 8: XML based Message Formats

• Part 9: SigG Profile

In addition to the Specification Parts of Common PKI, a matching Common PKI Test
Specification is provided.

Supplemental documentation may also be published as a Common PKI document. An
important example are the Common PKI Compliance Criteria that define, which of the
requirements of the Specification Parts a specific PKI product or service of a certain type
(e. g. an OCSP server, a secure e-mail client or a SigG-Profile-compliant certification
service).

In-between releases of the Common PKI Specification, Corrigenda to the specification and
test specification, if necessary, are published as separate documents. These Corrigenda
become effective immediately with their publication, i.e. the effectual text of the Common
PKI Specification will be that of the Specification Parts with the changes specified in the
Corrigenda document applied.

Common PKI: Introduction Version 2.0

References Common PKI Introduction – Page 9 of 12

3 Terminology and Notation

3.1 Support Requirements
The Common PKI Specification raises requirements on PKI-components for supporting a
variety of objects, such as functions of an API, messages of some communication protocol,
and specific fields in some data structure. As a basic approach, the Common PKI
Specification consequently distinguishes among requirements of the following two types:

• requirements that have to fulfilled during the generation of particular objects, e.g. of an
email, a certificate, an OCSP request message, a XML signature, or while calling an API.
Such requirements typically enforce constraints on the contents of data and protocol
objects as well as restrict the set of applicable API functions or cryptographic
mechanisms while generating those objects.

• requirements that have to be fulfilled while processing particular objects, e.g. while
displaying the content of an email, while decoding and interpreting a certificate, while
processing an OCSP request message, while parsing and evaluating a XML data element,
or while executing an API function. Such requirements typically enforce the component
to accept and properly interpret and evaluate certain contents in data and protocol objects
as well as to provide certain API functions or cryptographic mechanisms to properly
process those objects.

These two different types of requirements will be denoted by ‘GEN’ and respectively by
‘PROC’ in shorthand.

Support requirements regarding generation and processing of objects are described by using
the key words MUST, SHALL, SHOULD, RECOMMENDED, MAY, OPTIONAL, respectively
MUST NOT, SHALL NOT, SHOULD NOT, FORBIDDEN. These key words will be used in
this document using the semantics defined in [RFC2119] and will be typeset in capitals. For
clarity, the terminology of [RFC2119] is simplified here to five notions, which are listed in
Table 1. The word SHALL occurring in RFCs has been translated here to MUST. To provide a
compact notation for tables we introduce in Table 1 a shorthand notation too.

Table 1: Abbreviations for Key Words to Indicate Support Requirements

 MEANING

++ This sign is equivalent to the key words MUST, SHALL, MANDATORY.
+ This sign is equivalent to the key words SHOULD, RECOMMENDED .
+- This sign is equivalent to the key words MAY, OPTIONAL.
- This sign is equivalent to the key words SHOULD NOT, NOT RECOMMENDED.
-- This sign is equivalent to the key words MUST NOT, SHALL NOT, FORBIDDEN.
n.a. no information available, not applicable

Support of a specific data field at the generating component refers to the requirement whether
the component must, should, may, should not or must not include or fill in the specified field
while generating the object. Support of an API function or cryptographic algorithm at the
generating component refers to the requirement whether the component must, should, may,
should not or must not call a specific API functions or employ a specific cryptographic
mechanism.

Common PKI: Introduction Version 2.0

References Common PKI Introduction – Page 10 of 12

Support of a specific data field at the processing component refers to the requirement whether
the component must, should, may, should not or must not be able to interpret or evaluate the
content of the specified field while generating the object. Support of an API function or
cryptographic algorithm at the processing component refers to the requirement whether the
component must, should, may, should not or must not implement a specific API function or
cryptographic mechanism.

A note on the support of ASN.1 objects: ASN.1 is widely used to specify data and protocol
objects. The corresponding encoding rules, such as DER, allow a platform-independent
representation of the objects, which is widely used in protocol and data object
implementations. We stress that all Common PKI compliant clients MUST be able to decode
or to skip all fields of a DER encoded data or protocol object that are specified in this
specification, i.e. even the ones marked as forbidden. Such fields occur in this specification
because they conform to some older and obsolete specification (PKIX, ISIS or MailTrusT)
and may thus occur in data objects (certificates, signed documents or CRLs) in current use.
Backward compatibility with these objects requires tolerant behaviour of the components
processing them. This is just the application of the principle “be strict at what you send and be
tolerant at what you receive”.

3.2 Common PKI Conformance
A component is called Common PKI compliant, if it satisfies all requirements that apply to a
specific component and that are specified as obligatory (‘++’) or forbidden (‘--‘) in the
Common PKI specification. It should be noted that the specification also contains
recommendations in addition to the requirements that are always explicitly marked (‘+’ or ‘-
‘). Common PKI conformance only refers to requirements and not to recommendations.

3.3 Notation
The Common PKI Specification is intended to be a kind of quick reference. Specifications are
provided in tabular form with a reference to corresponding sections of IETF and ETSI
documents. Therefore, Common PKI is written in the style of a delta specification that allows
to produce a comprehensive specification without reduplicating all information from the
referenced standards.

Most tables have the same structure. Each row corresponds to one item, e.g. a field of a data
structure. The columns of the tables headed by #, Name, Semantics, References, Support and
Notes provide the following information:

unique reference number that corresponds to one particular item, e.g. a field of a
data structure,

Name technical name of the field,

Semantics short description of the meaning of the field in order for ease of reading,

References reference to clauses in the corresponding IETF, W3C or ETSI standards where
the semantics and syntax of the objects are described,

Support requirements for generating (GEN) and processing (PROC) components using
the shorthand notation of Table 1, and

Notes further explanatory text that may be given on constraints, permitted value set etc.
applying for the described object.

Common PKI: Introduction Version 2.0

References Common PKI Introduction – Page 11 of 12

References to Common PKI documents will be given using the following notation:

‘Px.Ty.#z’ reference to ‘Part x, Table y, Row z‘, or

‘Px.Ty.[v]’ reference to ‘Part x, Table y, Note v’, or

Px.Sy.z reference to section y.z of Part x in the Common PKI Specification

As readily mentioned in Section 1.2, this Common PKI Specification is a profile to PKIX,
W3C and ETSI standards. To allow the reader to quickly locate profiling information, text
segments adding new definitions to those profiled documents, replacing requirements or
restricting the usage of objects in some way, will be conspicuously indicated by the words
‘Common PKI Profile’ and the shown fat typesetting.

Common PKI: Introduction Version 2.0

References Common PKI Introduction – Page 12 of 12

References

[ECDIR99] Directive 1999/93/EC of the European Parliament and of the Council of 13
December 1999 on a Community Framework for Electronic Signatures

[MTTv2] MailTrusT Version 2, March 1999, TeleTrusT Deutschland e.V.,
www.teletrust.de

[ISIS99] Industrial Signature Interoperability Specification ISIS, Version 1.2,
December 1999, T7 i. Gr., www.t7- isis.de

[ISIS-MTTv1.1] Common ISIS-MTT Specifications for Interoperable PKI Applications,
Version 1.1, March 2004, T7 i.G. and TeleTrustT e.V.

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels, RFC 2119,
March 1997

[SigG01] Law Governing Framework Conditions for Electronic Signatures and
Amending Other Regulations (Gesetz über Rahmenbedingungen für
elektronische Signaturen und zur Änderung weiterer Vorschriften),
Bundesgesetzblatt Nr. 22, 2001, S.876, non-official version available at
http://www.bundesnetzagentur.de/media/archive/3612.pdf.

[SigV01] Ordinance on Digital Signatures (Verordnung zur digitalen Signatur –
SigV), 2001, non-official version available at
http://www.bundesnetzagentur.de/media/archive/3613.pdf1

COMMON PKI SPECIFICATIONS
FOR INTEROPERABLE APPLICATIONS

FROM T7 & TELETRUST

 SPECIFICATION

PART 1

CERTIFICATE AND CRL PROFILES

VERSION 2.0 – 20 JANUARY 2009

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Contact Information Common PKI Part 1 – Page 2 of 67

Contact Information

The up-to-date version of the Common PKI specification can be downloaded from
www.common-pki.org or from www.common-pki.de
Please send comments and questions to common-pki@common-pki.org.

Editors of Common PKI specifications:

Hans-Joachim Bickenbach

Jürgen Brauckmann

Alfred Giessler

Tamás Horváth

Hans-Joachim Knobloch

© T7 e.V. and TeleTrusT e.V., 2002-2009

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Document History Common PKI Part 1 – Page 3 of 67

Document History

VERSION
DATE

CHANGES

1.0
30.09.2001

First public edition

1.0.1
15.11.2001

A couple of editorial and stylistic changes:
1) references to SigG-specific issues eliminated from core documents
2) core documents (Part 1-7) and optional profiles have been separated in different PDF

documents.
1.0.2
19.07.2002

Several editorial changes and bug-fixes. The most relevant changes affecting technical aspects
are:
1) OID { PKIX 9 3 } for pseudonym deleted. (v101.T2.#6)
2) The correct interpretation of badly encoded INTEGERs is no longer required but

recommended. (T2.[8])
3) Encoding Latin-1 characters in UTF8 strings is no longer forbidden, but it is still not

recommended. (T6.[2])
4) Including an emailAddress attribute in EE DNames is tolerated by ISIS-MTT for practical

compatibility reasons. (T7.#17,[5])
5) The “dummy” ASN.1 definition of the obsolete ORAddress type changed to one that is able

to decode the full structure. The definition in v101 could not be compiled. (T8.#13)
6) The support requirements for AuthorityKeyIdentifier have been changed to fully comply

with RFC2459: keyIdentifier is mandatory, authorityCertIssuer&Serial optional.
(T11.#2..4) The same applies for ACs. (T30.#1)

7) All methods described in RFC2459 are permitted here too to build key identifiers. (T11.[2])
8) Providing an LDAP-URL in IssuerAltNames pointing to the CA certificate is no longer

mandatory, but optional. (T16.#2,[3])
9) The support of SubjectDirectoryAttributes in processing components is no longer

discouraged (-), but (according to RFC3039) optional. (T17.#1)
10) According to RFC3280, BasicConstraints MAY appear in EE-Certs. V1.0.1 advised against

this practice. (T18.#1)
11) NameConstraints and PolicyConstraints MUST be supported by processing components, as

these extensions MUST be considered in the validation process, if they are flagged critical.
In v1.0.1 this was only recommended. (T19.#1,[1], T20.#1,[1])

12) CRLDistributionPoints is no longer mandatory, but recommended to be supported by
processing components. (T21.[1],T30.#2) Applications may use other methods to locate
CRLs.

13) As for the generation of PKCs and ACs, CRLDistributionPoints is required in case the CA
issues indirect CRLs and recommended in “direct” case. (T21.#1,#3,#5, T25.#3) V1.0.1 did
not make this distinction. Providing an LDAP-URL is no longer mandatory.

14) AuthorityInfoAccess is no longer mandatory, but recommended to be supported by
processing components. (T23.[1],T30.#4) Applications may use other methods to obtain
status info.

15) The definition of MonetaryValue has been extended to the form given by v1.2.1 of [ETSI-
QC]. A backward compatibility is automatically given. (T25.#15)

16) Alternative name forms (except directoryString), similar to those in the IssuerAltNames
extension of PKCs, MAY be included in the issuer field of ACs. (T28.#4)

1.0.2
11.08.2003

Incorporated all changes from Corrigenda version 1.2

1.1

16.03.2004
Several editorial changes. The most relevant changes affecting technical aspects are:
1) caIssuer information in AuthorityInfoAccess is no longer forbidden but optional.
2) ExtendedKeyUsage now follows [RFC3280].
3) SubjectAltNames, IssuerAltNames and the GeneralNames structure now follow [RFC3280].
4) KeyUsage has been aligned with [ETSI-CPN].
5) Following [ETSI-CPN], countryName is not longer required for end entity subject names.
6) Mandatory use of UTF8String encoding for DirectoryString elements has been postponed

for a transition period

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Document History Common PKI Part 1 – Page 4 of 67

7) The gender attribute is permitted in EE subject names of natural persons.
8) Definitions of ISIS-MTT private attributes for attribute certificates have been moved from

the optional SigG Profile to core Part 1.
9) In accordance with RFC 3039bis,.use of postalAddress is discouraged.
10) ReasonFlags for CRLDistributionPoints now follow [RFC3280].
11) IssuingDistributionPoints now follows [RFC3280].
12) CRLReason to RFC 3280 now follows [RFC3280].
13) DisplayText for CertificatePolicies now follows [RFC3280].

1.1

13/10/ 2008

Incorporated all changes from Corrigenda to ISIS-MTT 1.1

2.0
20/Jan/2009

Name change from ISIS-MTT to Common PKI.
Adapted to new versions of the base standards:

- ETSI TS 101 861 v1.3.1
- ETSI TS 101 862 v1.3.3
- ETSI TS 102 280 v1.1.1
- RFC 2822
- RFC 2460
- RFC 3490
- RFC 3629
- RFC 3739
- RFC 3986
- RFC 4510
- RFC 4516
- RFC 4519
- RFC 4523
- RFC 5280
- X.509:2005

Various corrections and clarifications.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Table of Contents Common PKI Part 1 – Page 5 of 67

Table of Contents

1 Preface... 6

2 Public Key Certificate Format.. 7

2.1 Distinguished Names..11

2.2 GeneralNames ..15

2.3 Public Key Certificate Extensions ..16

2.3.1 Standard Certificate Extensions ...19
2.3.2 PKIX Private Certificate Extensions ...36

3 Attribute Certificate Format... 42

3.1 Attribute Certificate Attributes..45

3.2 Attribute Certificate Extensions ...53

4 CRL Format.. 54

4.1 CRL Extensions ..56

4.2 CRL Entry Extensions ...60

5 Cross Certificates .. 64

6 Common PKI Object Identifiers ... 65

References... 66

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Preface Common PKI Part 1 – Page 6 of 67

1 Preface

This part of the Common PKI specification describes certificate and certificate revocation list
(CRL) formats. These formats conform to the most widely accepted international standards,
namely to the ITU-T X.509 standard [X.509:2005] and to the PKIX-profile for public key
certificates and CRLs [RFC5280]. General information from those referenced documents will
not be completely repeated here. Only a short description of the semantics and relevant notes
on the usage or value constraints will be given.

Fulfilling the requirements of the special application area of qualified certificates is a major
goal of this Common PKI Specification. The full compatibility with the PKIX qualified
certificate profile [RFC3739] (formerly [RFC3039]) and the ETSI Qualified Certificate
Profile [ETSI-QC] Standards of the European Telecommunications Standards Institute (ETSI)
will be enforced. As for attribute certificates, the [X.509:1997] format (attribute certificate v1)
has been used as basis for this specification.

Besides conformance with international standards, backward compatibility with [ISIS] and
[MTTv2] will be provided as far as possible, so that legacy systems and information (e.g.
certificates, signed documents) can be used further on. This complex profiling structure is
depicted in Figure 1 below. (The figure represents the status as of ISIS-MTT 1.0; several of
the base standards have evolved and influenced subsequent versions of ISIS-MTT and
Common PKI.)

X.509v3
(1993, 1997)

ISIS Attr.Cert.Profile
(2001)

MailTrusT v2
Key Cert. Profile

(1999)

ISIS v1.2
Key Cert. Profile

(2000)

RFC-2459
Key Cert. & CRL Profile

(1999)

RFC Draft
Attr.Cert. Profile

(2000)

SigI Abschnitt A
Key and Attr.Cert Profiles

(1999)

profiling
MailTrusT v1

Key Cert. Profile
(1997)

en
ha

nc
em

en
t

w
. b

ac
kw

ar
d

co
m

pa
tib

ili
ty

profiling

pr
of

ili
ng

profiling
profiling

pr
of

ilin
g

enhancem
ent

w
. backw

ards
com

patibility

profiling

ISIS-MTT
(2001)

enh
anc

em
ent

w. backw
ard

compatibility

enhancementw. backwardcompatibility adding to

RFC 3039
Qualified Cert. Profile

(2000)

profiling
com

patibility

enhancement

w.backwards

compatibility

ETSI TS 101862
Qualified Cert. Profile

(2001)

pro
filin

g

com
patibility

Figure 1: An overview of different standards and profiles on certificate formats

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 7 of 67

2 Public Key Certificate Format

Table 1: Certificate

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 Certificate ::= SEQUENCE { 4.1.1
2 tbsCertificate TBSCertificate, the DER-encoding of this “to be signed” part of the

data structure will be signed by the CA
 4.1.1.1 T2

3 signatureAlgorithm AlgorithmIdentifier, an identifier of the signature algorithm used by the CA
to sign this certificate

 4.1.1.2 T4

4 signature BIT STRING } the signature of the CA represented as BIT STRING 4.1.1.3

Table 2: TBSCertificate

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 TBSCertificate ::= SEQUENCE { 4.1.1.1
2 version [0] EXPLICIT Version DEFAULT v1, Version number of the public key certificate format 4.1.2.1 #12 [1]
3 serialNumber CertificateSerialNumber, Serial number of the certificate 4.1.2.2 #13 [2]

[3]
[8]

4 signature AlgorithmIdentifier, an identifier of the signature algorithm used by the CA
to sign this certificate.

 4.1.2.3 T4 [4]

5 issuer Name, DName of the issuer of this certificate 4.1.2.4 T15 [5]
6 validity Validity, Validity period of the certificate 4.1.2.5 T3
7 subject Name, DName of the certificate holder 4.1.2.6 T5 [6]
8 subjectPublicKeyInfo SubjectPublicKeyInfo Public key of the certificate holder and the

corresponding algorithm
 4.1.2.7 #14 [10]

9 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL, a unique identifier for the issuer, if issuer DName is
reused over time

−− + 4.1.2.8 #17 [7]

10 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL, a unique identifier for the subject, if subject DName is
reused over time

−− + 4.1.2.8 #17 [7]

11 extensions [3] EXPLICIT Extensions OPTIONAL} Extensions ++ ++ 4.2 T9
12 Version ::= INTEGER { v1(0), v2(1), v3(2) } Version number of the certificate format 4.1.2.1
13 CertificateSerialNumber ::= INTEGER Serial number of the certificate 4.1.2.2 [8]

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 8 of 67

14 SubjectPublicKeyInfo ::= SEQUENCE { Public key structure 4.1.2.7
15 algorithm AlgorithmIdentifier Cryptographic algorithm to be used with the key 4.1.2.7 T4 [9]
16 subjectPublicKey BIT STRING } Public Key in DER-encoded form 4.1.2.7 [8]
17 UniqueIdentifier ::= BIT STRING -- + 4.1.2.8 [7]
[1] [RFC5280] Value v3(2) must be used, if any extension is used as expected in this profile. If no extension, but #9 or #10 is present, use v2(1). Otherwise the value is v1(0).
[2] [RFC5280]: the serial number MUST be a positive integer, not longer than 20 octets (1 ≤ SN < 2159, MSB=0 indicates the positive sign!). Processing components MUST

be able to interpret such long numbers.
Common PKI Profile: the above requirements on length apply.

[3] [RFC5280]: The issuer name and the serialNumber of public key certificates (PKCs) MUST identify a unique certificate.
Common PKI Profile: the uniqueness requirement is extended to all kind of certificates, i.e. for PKCs as well as attribute certificates (ACs).
The reason for that is to allow the same CA to issue PKCs as well as ACs (which is the case in current systems) and furthermore to allow the same CRL to contain entries
to PKCs as well as to ACs. Note, that [RFC3281] forbids issuing PKCs and ACs at the same time, which is not the case in Common PKI.

[4] [RFC5280]: The content must be the same as that of signatureAlgorithm in T1.#3.
[5] [RFC5280]: The issuer name MUST be a non-empty DName. Processing components MUST be prepared to receive the following attributes: countryName ,

organizationName , organizationalUnitName , distinguishedNameQualifier, stateOrProvinceName, commonName, serialNumber, and domainComponent. Processing
components SHOULD be prepared for attributes: localityName, title, surname, givenName, initials, pseudonym, and generationQualifier.
[RFC3739]: the issuer DName MUST contain an appropriate subset of the following attributes: domainComponent, countryName, stateOrProvinceName,
organizationName, localityName and serialNumber. Additional attributes may be present, but SHOULD NOT be necessary to identify the CA.
[ETSI-QC]: the issuer name MUST contain the countryName attribute. The specified country MUST be the country where the issuer CA is established.
[ETSI-CPN]: the issuer name MUST contain the countryName and the organizationName attributes.
Common PKI Profile: the issuer DName MUST be identical to the subject DName in the issuer’s certificate to allow chain building. The issuer DName (i.e. the DName
of each CA) MUST contain at least the attributes countryName and organizationName . OrganizationName SHOULD contain the name of the organization that operates the
CA.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 9 of 67

[6] [RFC5280]: the subject name MUST be unique for a subject entity (certificate holder) among all certificates issued by the CA and for the whole lifecycle of the CA. The
same requirements apply as to the issuer field [5]. Instead of including an emailAddress DName attribute, the rfc822Name alternative of the subjectAltNames extension
SHOULD be used.
[RFC3739]: the subject DName MUST contain an appropriate subset of the following attributes: countryName, commonName, surname, givenName, pseudonym,
serialNumber, title, organizationName, organizationalUnitName, stateOrProvincename and localityName.
Additional attributes may be present, but SHOULD NOT be necessary to distinguish the subject name from other subject names within the issuer domain.
If a pseudonym is given, surname and givenName MUST NOT be present in the DName.
[ETSI-CPN]: The subject field of EE certificates for natural persons SHALL include at least the commonName or the givenNamen and surname attribute.
[ETSI-TSP]: The subject name of TSP certificates SHALL contain an appropriate subset of the following attributes: countryName , stateOrProvinceName ,
organizationName and commonName . The organizationName and commonName SHALL be present.
Common PKI Profile: the subject name of an end entity MUST at least contain the attribute commonName. In an Common PKI-conforming QC, the commonName
attribute MUST either specify the legal name of the certificate holder or a pseudonym, where the pseudonym MUST be marked with the suffix “:PN”. To conform with
[RFC3739], certificates MAY contain the same name (including suffix!) additionally in the pseudonym attribute too. If a pseudonym attribute is present, it MUST contain
the same name (including suffix) as the commonName attribute.
Including a gender attribute in EE subject names of natural persons is permitted by Common PKI. Including an emailAddress attribute in EE DName is tolerated by
Common PKI for practical compatibility reasons (Netscape).

[7] [RFC5280]: CAs SHOULD generate certificates with unique subject and issuer DNames, and SHOULD NOT make use of uniqueIdentifers. Processing components
SHOULD be able to interpret uniqueIdentifiers.
Common PKI Profile: CAs MUST generate certificates with unique subject and issuer DNames over the entire life cycle of the CA, and MUST NOT make use of
uniqueIdentifers. Processing components that cannot properly handle uniqueIdentifiers, MUST refuse those certificates.

[8] A note on implementation: the value of the DER-encoding of INTEGER types contains the 2’s complement form of the number in big endian form (mo st significant octet
first). This is a signed representation, i.e. the most significant bit (MSB) indicates the sign, and must thus be a ‘0’ for natural numbers. It is a common mistake to encode
natural numbers, like CertificateSerialNumber or the modulus and exponent of RSAPublicKey, in unsigned form. Implementers MUST make sure that a zero octet (00h) is
inserted in front of the unsigned form if the MSB of the unsigned value is a ‘1’, e.g. 255 must be encoded as (00h,ffh). As for receiving and processing badly encoded
INTEGERs, processing components SHOULD be able to retrieve the correct number, if it can be assumed, as in the above mentioned cases, that the represented number is a
natural number, e.g. (0xff) must be interpreted as 255 and not as –1.

[9] [ETSI-CPN]: ETSI strongly recommends to use rsaEncryption.
[10] Common PKI Profile: Whether more than one public key certificate for a particular public key may be issued is a matter of policy that lies beyond the scope of this

specification. Note, however, that if several public key certificates exist pertaining to the same public key, any operation done with the corresponding key pair cannot be
uniquely attributed to a particular certificate. Therefore it is good practice to avoid issuing a second certificate for a public key for reasons of security and usability. If a
second certificate is issued nevertheless, it should only be for the same certificate holder and consistent with the policy (as manifested in particular in the KeyUsage,
ExtendedKeyUsage, QCStatements and CertificatePolicies extensions) of the original certificate.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 10 of 67

Table 3: Validity, Time

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 Validity ::= SEQUENCE { 4.1.2.5
2 notBefore Time, 4.1.2.5 [1]
3 notAfter Time } 4.1.2.5 [1]
4 Time ::= CHOICE { 4.1.2.5
5 utcTime UTCTime, ++ ++ 4.1.2.5.1
6 generalizedTime GeneralizedTime } ++ ++ 4.1.2.5.2
[1] [RFC5280]: Validity dates before and through 2049 MUST be encoded by CAs as UTCTime, dates in 2050 and later as GeneralizedTime . Date values MUST be given in

the format YYMMDDhhmmssZ resp. YYYYMMDDhhmmssZ, i.e. always including seconds and expressed as Zulu time (Universal Coordinated Time)
Common PKI Profile: Processing components MUST be able to interpret all date formats, i.e. GeneralizedTime too.

Table 4: AlgorithmIdentifier

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 AlgorithmIdentifier ::= SEQUENCE { 4.1.1.2
2 algorithm OBJECT IDENTIFIER,

 [RFC

3279]
P6 [1]

3 parameters ANY DEFINED BY algorithm OPTIONAL } [RFC
3279]

P6

[1] For permitted algorithm identifiers and parameters refer to Part 6 (Cryptographic Algorithms) of this Common PKI Specification.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 11 of 67

2.1 Distinguished Names

Table 5: Name

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 Name ::= CHOICE { RDNSequence } 4.1.2.4 #2
2 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName 4.1.2.4 #3
3 RelativeDistinguishedName ::= SET OF AttributeTypeAndValue 4.1.2.4 #4
4 AttributeTypeAndValue ::= SEQUENCE { 4.1.2.4
5 type AttributeType, #7
6 value AttributeValue } #8
7 AttributeType ::= OBJECT IDENTIFIER 4.1.2.4
8 AttributeValue ::= ANY DEFINED BY AttributeType 4.1.2.4

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 12 of 67

Table 6: DirectoryString

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 DirectoryString ::= CHOICE { 4.1.2.4 [1]
2 printableString PrintableString (SIZE (1..maxSize)), +- ++
3 teletexString TeletexString (SIZE (1..maxSize)), -- ++ [3]
4 utf8String UTF8String (SIZE (1.. maxSize)), + ++ [2]
5 bmpString BMPString (SIZE (1..maxSize)), -- ++
6 universalString UniversalString (SIZE (1..maxSize)) } -- ++
[1] [RFC5280]: CAs MUST use either the PrintableString or UTF8String encoding of DirectoryString, with two exceptions. When CAs have previously issued certificates

with issuer fields with attributes encoded using TeletexString, BMPString, or UniversalString, then the CA MAY continue to use these encodings of the DirectoryString to
preserve backward compatibility. Also, new CAs that are added to a domain where existing CAs issue certificates with issuer fields with attributes encoded using
TeletexString, BMPString, or UniversalString MAY encode attributes that they share with the existing CAs using the same encodings as the existing CAs use.
Common PKI Profile: Strings MAY be encoded as PrintableString in order to ensure a better interoperability with legacy applications. If a string cannot be represented in
the PrintableString character set, UTF8String encoding MUST be used. If permitted by the applicable certificate policy, characters that are not in the PrintableString
character set MAY be transcribed in PrintableString characters according to local conventions for the transcription of national character sets in DNS domain names or E-
Mail addresses (e.g. German umlaut “ä” to “ae”).

[2] Common PKI Profile: Following [MTTv2], Common PKI RECOMMENDS using a subset of the UTF8 character set, including only the ANSI/ISO 8859-1 characters
(Unicode Latin-1 page). Since Windows and UNIX systems use the ISO 8859-1 codes for displaying characters, this restriction makes software implementation easier:
strings can be displayed on those platforms irrespective of locale settings.
Hence, generating components SHOULD NOT include characters of code pages other than Latin-1. Processing components MUST be able to correctly display Latin-1
characters and MAY be able to display other UTF8 characters too. Processing components MUST tolerate (i.e. MUST be able to decode) all UTF8 characters, even if they
are unable to display them correctly. In this latter case, non-Latin-1 characters SHOULD be replaced by some well-defined dummy character on the display, e.g. ‘? ’

[3] Note that there are two practices to encode TeletexString: some implementations use the T.61 encoding rules using floating diacritics (roughly said, “á” will be encoded on
two bytes as “´a”). Unfortunately, there are even different code tables in use, but the one from IBM is probably the most widely used. Most Internet applications simply use
the ANSI/ISO 8859-1 code table (used by Windows and UNIX systems) to encode strings and tag them as TeletexString. Applications SHOULD assume this case, when
processing and SHOULD encode in this way, when generating data.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 13 of 67

Table 7: Supported X.501 attribute types and their maximal lengths

SUPPORT COMMON PKI SUPPORT
RFC5280

SUPPORT
RFC3739 CA DNAME EE DNAME

ATTRIBUTE NAME ATTRIBUTE OID ASN.1 STRING TYPE MAXIMAL STRING
LENGTH ,
VALUE
CONSTRAINTS
(PKIX, IF DIFFERENT)

PROC PROC GEN PROC GEN PROC

NO
TES

1 commonName {id-at 3} DirectoryString 64 ++ ++ +- ++ ++ ++ [1]
2 surName {id-at 4} DirectoryString 64 (32768) + ++ +- ++ +- ++ [2]
3 givenName {id-at 42} DirectoryString 64 (32768) + ++ +- ++ +- ++ [2]
4 serialNumber {id-at 5} PrintableString 64 n.a. ++ +- ++ +- ++
5 title {id-at 12} DirectoryString 64 + ++ +- ++ +- ++
6 organizationName {id-at 10} DirectoryString 64 ++ ++ ++ ++ +- ++
7 organizationalUnitName {id-at 11} DirectoryString 64 ++ ++ +- ++ +- ++
8 businessCategory {id-at 15} DirectoryString 128 n.a. n.a. - + - + [3]
9 streetAddress {id-at 9} DirectoryString 128 n.a. n.a. - + - + [4]
10 postalCode {id-at 17} DirectoryString 40 n.a. n.a. - + - + [4]
11 localityName {id-at-7} DirectoryString 128 + ++ +- ++ +- ++
12 stateOrProvinceName {id-at 8} DirectoryString 128 ++ ++ +- ++ +- ++
13 countryName {id-at 6} PrintableString (SIZE(2)) 2 the ISO 3166

code
++ ++ ++ ++ +- ++

14 distinguishedNameQualifier {id-at 46} PrintableString 64 (n.a.) ++ n.a. +- ++ +- ++ [2]
15 initials {id-at 43} DirectoryString 64 (32768) + n.a. +- + +- + [2]
16 generationQualifier {id-at 44} DirectoryString 64 (32768) + n.a. +- + +- + [2]
17 emailAddress {pkcs-9 1} IA5String 128 +

GEN--
n.a. - + - + [5]

18 domainComponent {0 9 2342 19200300
100 1 25}

IA5String usage described in
[RFC4519]

++ ++ +- ++ +- ++ [8]

19 postalAddress {id-at 16} SEQUENCE SIZE (1..6) OF
DirectoryString

6x30, usage described
in [RFC3039]

n.a. n.a. - + - + [4]

20 pseudonym {id-at 65} DirectoryString 64 (n.a.) n.a. ++ +- ++ +- ++ [1]
21 dateOfBirth {id-pda 1} GeneralizedTime YYYYMMDD00000

0Z
n.a. ++ +- ++ +- ++ [6]

22 placeOfBirth {id-pda 2} DirectoryString 128 (n.a.) n.a. ++ +- ++ +- ++ [6]
23 gender {id-pda 3} PrintableString (SIZE(1)) „M“ or „F“ n.a. ++ +- ++ +- ++ [6],

[7]
24 countryOfCitizenship {id-pda 4} PrintableString (SIZE(2)) 2 the ISO 3166 code n.a. ++ +- ++ +- ++ [6]

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 14 of 67

25 countryOfResidence {id-pda 5} PrintableString (SIZE(2)) 2 the ISO 3166 code n.a. ++ +- ++ +- ++ [6]
26 nameAtBirth {id-commonpki-at

14}
DirectoryString 64 n.a. n.a. +- ++ +- ++ [6]

[1] Common PKI Profile: Following the common practice, the pseudonym MUST be put in the commonName attribute and marked with suffix “:PN”. To conform with
[RFC3739], the same name (including suffix) MAY be included in the dedicated pseudonym attribute too. If a pseudonym attribute is present, it MUST contain the same
name (including suffix) as the commonName attribute.

[2] Common PKI Profile: This Common PKI specification enforces the length limits published in PKIX documents. If no (practical) limit is set by some PKIX document, an
appropriate maximal length is specified here. CAs MUST keep strings in new certificates at most as long as specified here. Clients MUST be able to display strings at least
as long as specified here. For the sake of wider interoperability, clients SHOULD be able to parse arbitrarily long strings.

[3] Common PKI Profile: businessCategory is not listed in any PKIX documents among the mandatory attributes. Hence, this Common PKI specification discourages from its
use. For backward compatibility, processing components SHOULD still be able to interpret the attribute.

[4] Common PKI Profile: streetAddress and postalCode are not listed in any PKIX documents among the mandatory attributes. Hence, this Common PKI specification
discourages from its use. However, since current systems use them to store subjects’ or their organizations’ postal addresses, processing components SHOULD still be able
to interpret these attributes.
If postalAddress is used, elements of the string list provided in this attribute SHOULD contain all components of the address (including country, postal code, state, locality,
street address), listed in the order and form, which is usual in the respective country and which is suitable for multi-lined printing in a regular document.
An example for an address in Ge rmany:
1st string element: Turmstraße 123
2nd string element: 10123 Berlin
3rd string element: Germany

[5] Common PKI Profile: Including an emailAddress attribute in DNames is tolerated by Common PKI for practical compatibility reasons (Netscape).
[6] [RFC3739]: The PKIX working group has recognized the demand that personal identification data can be in a separate attribute certificate (e.g. if the PKC should not make

this info public). RFC3739 defines a couple of new DName attributes for this purpose (dateOfBirth, placeOfBirth, gender, countryOfCitizenship, countryOfResidence).
According to RFC3739, these attributes are to be stored in the SubjectDirectoryAttributes extension of the public key certificate. RFC3739 explicitly states that new
attribute types MAY be included according to local definitions.
Common PKI Profile: In most European countries, the name of a person at his/her birth is a relevant identification attribute. Hence the new attribute NameAtBirth is
introduced here. The SubjectDirectoryAttributes extension MAY be included ONLY in EE certificates of natural persons.

[7] Common PKI Profile: Including a gender attribute in EE subject names of natural persons is permitted.
[8] [RFC5280]: To represent an internationalized domain name, the issuing CA MUST perform the ToASCII label conversion specified in Section 4.1 of [RFC3490]. The label

SHALL be considered a "stored string". That is, the AllowUnassigned flag SHALL NOT be set.
Common PKI Profile: Processing operations MAY handle domain name labels in domainComponent attributes as mere IA5Strings, irrespectively whether they are
traditional or converted internationalized domain names.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 15 of 67

2.2 GeneralNames

Table 8: GeneralNames

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName 4.2.1.7 #2
2 GeneralName ::= CHOICE { 4.2.1.7
3 otherName [0] IMPLICIT OtherName, for identification data of some special syntax not

listed below
-
(RFC
+-)

+- #12 [1]

4 rfc822Name [1] IMPLICIT IA5String, Email address in the Internet as described in
[RFC2822]

+- + [4]

5 dNSName [2] IMPLICIT IA5String, Internet domain name as in [RFC1034] +- + [4]
6 x400Address [3] IMPLICIT ORAddress,

X400 address as in ITU-T X.411 - +- #13 [1]

7 directoryName [4] EXPLICIT Name, X500 address +- + T5 [2]
8 ediPartyName [5] IMPLICIT EDIPartyName, name in an Electronic Data Exchange system - +- #14 [1]
9 uniformResourceIdentifier [6] IMPLICIT IA5String, URI as defined in [RFC1630], allowing uniform

resource names (URNs) as well as URLs.
Permitted URL forms are specified in [RFC1738],
[RFC3986] and [RFC4516].

+- + [4]

10 iPAddress [7] IMPLICIT OCTET STRING, IP address in IPv4 [RFC791] or in IPv6
[RFC2460] format

+- +

11 registeredID [8] IMPLICIT OBJECT IDENTIFIER } a registered OBJECT IDENTIFIER (e.g. of a
company or organization)

- +- [1]

12 OtherName ::= SEQUENCE {
 type-id OBJECT IDENTIFIER
 value [0] EXPLICIT ANY DEFINED BY type-id }

 4.2.1.7 [1]

13 ORAddress ::= SEQUENCE {
 built-in-standard-attributes SEQUENCE OF ANY,
 built-in-domain-defined-attributes SEQUENCE OF ANY OPTIONAL,
 extension-attributes SET OF ANY OPTIONAL }

 n.a. [3]

14 EDIPartyName ::= SEQUENCE {
 nameAssigner [0] EXPLICIT DirectoryString OPTIONAL
 partyName [1] EXPLICIT DirectoryString }

 4.2.1.7 T6 [2]

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 16 of 67

[1] [RFC3281]: Conforming implementations MUST be able to support the dNSName, directoryName, uniformResourceIdentifier , and iPAddress options. This is compatible
with the GeneralName requirements in [RFC5280]. Conforming implementations MUST NOT use the x400Address, ediPartyName or registeredID options. Conforming
implementations MAY use the otherName option to convey name forms defined in Internet Standards. For example, Kerberos [KRB] format names can be encoded into
the otherName , using a Kerberos 5 principal name OID and a SEQUENCE of the Realm and the PrincipalName .
Common PKI Profile: The name forms x400Address, ediPartyName or registeredID options are considered to be obsolete and are no longer recommended for use.

[2] CHOICE objects are always EXPLICITly tagged, independent of the default tagging modus.
[3] [RFC5280] defines type ORAddress in appendix A.1 following [X.509:2005].

Common PKI Profile: As ORAddress is considered to be obsolete. Making use of the ANY type, the rather elaborate definition in [RFC5280] is replaced in this
specification by a shallow “dummy” definition that allows receiving any ORAddress values, without actually recognizing the internal data content of the ORAddress
structure.

[4] [RFC5280] To represent an internationalized domain name in GeneralName , the issuing CA MUST perform the conversion operation specified in Section 4 of RFC 3490,
with the following clarifications: in step 1, the domain name SHALL be considered a "stored string". That is, the AllowUnassigned flag SHALL NOT be set; in step 3, set
the flag called UseSTD3ASCIIRules; in step 4, process each label with the ToASCII operation; and in step 5, change all label separators to U+002E (full stop).
Common PKI Profile: Processing operations MAY handle domain names in GeneralNames structures as mere IA5Strings, irrespectively whether they are traditional or
converted internationalized domain names.

2.3 Public Key Certificate Extensions

Table 9: Extensions

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension a non-empty list of extensions 4.1 #2
2 Extension ::= SEQUENCE { 4.1
3 extnID OBJECT IDENTIFIER, an OID specifying the type of the extension
4 critical BOOLEAN DEFAULT FALSE, critical flag
5 extnValue OCTET STRING } DER-encoding of the extension value

The order of discussing individual extensions matches the order in [RFC5280].

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 17 of 67

Table 10: An overview of public key certificate extensions

SUPPORT REFERENCES # EXTENSION OID SEMANTICS CRITI
CAL GEN

CA
CERT.

GEN
EE
CERT.

PROC RFC CO . PKI
NO
TES

 X.509 BASIC EXTENSIONS RFC5280
1 AuthorityKeyIdentifier {2 5 29 35} An ID identifying the public key (thus possibly several

certificates) of the issuing CA.
-- ++

++ +

(RFC
n.a.)

4.2.1.1 T11

2 SubjectKeyIdentifier {2 5 29 14} An ID identifying user certificates that contain a specific
public key.

-- ++

+ +
(RFC
n.a.)

4.2.1.2 T11

3 KeyUsage {2 5 29 15} Defines the purpose of the key pair (public and private key)
corresponding to the public key contained in the certificate

++
(RFC
+)

++ ++
(RFC
+-)

++
(RFC
n.a.)

4.2.1.3 T12

5 CertificatePolicies {2 5 29 32} Indicates the policy under which the certificate has been
issued and the purposes for which it is to be used.

+-

+- +- ++ 4.2.1.4 T14 [1]

6 PolicyMappings {2 5 29 33 } Indicates in a CA certificate that the issuing CA considers its
policy to be equivalent to the subject CA’s policy.

+

+- -- + 4.2.1.5 T15

7 SubjectAltNames {2 5 29 17} Alternative technical names of the subject:
OtherName, e-mail, DNS name, IP address, URI or other

-
(RFC
+-)

+- +- + 4.2.1.6 T16.#1

8 IssuerAltNames {2 5 29 18} Alternative technical names of the issuing CA:
OtherName, e-mail, DNS name, IP address, URI or other

- +-

+-

+ 4.2.1.7 T16.#2

9 SubjectDirectoryAttributes {2 5 29 9} This extension may contain further X.500 attributes of the
subject. Qualified certificates MAY store legal identification
data (e.g. of a personal identification card, passport or similar)
in this extension.

-- -
(RFC
3739
n.a.)

+- +
(RFC
3739
++)

4.2.1.8 T17

10 BasicConstraints {2 5 29 19} Indicates a CA certificate and defines how deep a certificate
may exists below that CA.

++ ++

+- ++ 4.2.1.9 T18

10a NameConstraints {2 5 29 30} Indicates a name space in a CA certificate, in which all subject
names (or subject alternative names) in subsequent certificates
of the path shall be located.

++ +-

--

++ 4.2.1.10 T19

10b PolicyConstraints {2 5 29 36} May be used in CA certificates to constrain path validation. ++ +-

--

++ 4.2.1.11 T20

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 18 of 67

11 ExtendedKeyUsage {2 5 29 37} Indicates purposes for which the key pair can be used,
additional to or in place of those in the KeyUsage extension.

+- +- +- ++
(RFC
n.a.)

4.2.1.12 T21

12 CRLDistributionPoints {2 5 29 31} Identifies how CRL information to this certificate can be
obtained.

-

+ +/++
dir/ind.
CRL

+ 4.2.1.13 T22

12a InhibitAnyPolicy {2 5 29 54} Indicates that the special anyPolicy OID is not considered an
explicit match for other certificate policies except when it
appears in an intermediate self-issued CA certificate.

++ +- -- + 4.2.1.14 T22a

12b FreshestCRL {2 5 29 46} This extension (a.k.a. DeltaCRLDistributionPoint) identifies
how delta CRL information is obtained.

-- +- +- + 4.2.1.15 T22b

 RFC5280 PRIVATE EXTENSIONS RFC5280
13 AuthorityInfoAccess {id-pe 1} Access to online validation service and/or policy information

of the CA issuing this certificate.
-- +- +- +

(RFC
n.a.)

4.2.2.1 T23

13a SubjectInfoAccess {id-pe 11} Indicates how to access information and services for the
subject of the certificate.

-- +- +- +
(RFC
n.a.)

4.2.2.2 T23a

 RFC3739 QC PRIVATE EXTENSIONS RFC3739
14 BiometricInfo {id-pe 2} Stores biometric information for authentication purposes. -- +- +- + 3.2.5 T24
15 QCStatements {id-pe 3} A statement to indicate the fact that the certificate is a

Qualified Certificate in accordance with a particular legal
system.

-
(RFC
3739
+-)

+-

+- +

3.2.6 T25 [1]

 RFC2560 PRIVATE EXTENSIONS RFC2560
16 OCSPNoCheck {id-pkix-

ocsp 5}
A CA specifies by including this extension in the certificate of
an OCSP responder that the requester can trust the certificate
and need not obtain revocation information.

- +-

+- + 4.2.2.2.1 T26

[1] Notes on criticality:
Common PKI Profile: For the sake of vertical interoperability, these extension SHOULD NOT be marked critical, in spite of the fact that their contents restrict the
usability of the certificate in some way. This is definitively a deviation from the criticality principle followed by PKIX documents. The main goal of this recommendation
is to allow successful verification of signed documents and certificates outside the Common PKI application group. An EE who receives a document carrying a qualified
electronic signature, is supposed to be interested primarily in reading the document and being assured that the signature is valid. The intention of this Common PKI
Specification is therefore that the EE is able to verify the signature and the corresponding certificates without error messages or warnings, regardless whether he/she/it uses
Common PKI-compliant software or not. It is put in the responsibility of the receiving party to employ appropriate software in critical applications. If the legal validity and
all legal circumstances and limitation of the signature are to be proven, that receiving party is required to use Common PKI-compliant software.
This flagging and verification policy contributes to achieving interoperability among different security levels, one of the major objectives of this Common PKI
Specification.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 19 of 67

2.3.1 Standard Certificate Extensions

Table 11: AuthorityKeyIdentifier and SubjectKeyIdentifier

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN
CA/EE
CERT

PROC RFC5280 CO . PKI
NO
TES

1 AuthorityKeyIdentifier ::= SEQUENCE {

An ID identifying the public key (thus possibly
several certificates) of the issuing CA.

++/++ +
(RFC
n.a.)

4.2.1.1 [1]

2 keyIdentifier [0] IMPLICIT KeyIdentifier OPTIONAL, ++ +

 #6

3 authorityCertIssuer [1] IMPLICIT GeneralNames OPTIONAL, +- +

 T8

4 authorityCertSerialNumber [2] IMPLICIT CertificateSerialNumber
 OPTIONAL }

 +- +

 T2.#13

5 SubjectKeyIdentifier ::= KeyIdentifier An ID identifying (possibly multiple) user
certificates that contain a specific public key.

++/+ +
(RFC
n.a.)

4.2.1.2 #6 [2]

6 KeyIdentifier ::= OCTET STRING
[1] [RFC5280]: AuthorityKeyIdentifier MUST be included in all CA and end entity certificates to facilitate chain building. (The only exception is a self-signed CA certificate

where authorityKeyIdentifier.keyIdentifier = subjectKeyIdentifier).
There are two methods to identify the public key:
a) by putting the subjectKeyIdentifier of the issuing CA in the keyIdentifier field (keyIdentifier MUST contain same ID as the subjectKeyIdentifier of the CA certificate)
b) by putting the DName of the issuing CA (as present in the issuer field of the of the corresponding CA certificate) and the serial number of the corresponding CA
certificate in the fields authorityCertIssuer and authorityCertSerialNumber.
Note that the information provided by method b) uniquely identifies the certificate rather than the public key.
Both identification methods MAY be used in the same certificate.
Common PKI Profile: We stress that the keyIdentifier field MUST contain exactly the same ID as the subjectKeyIdentifier of the CA certificate (see [2] below).
If authorityCertIssuer is present, it MUST contain exactly one directoryName element filled with the subject DName of the issuing CA certificate.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 20 of 67

[2] [RFC5280]: To facilitate chain building, this extension MUST be included in all CA certificates and SHOULD be formed using one of the following methods:
(a) composed of the SHA-1 hash of the value of the BIT STRING subjectPublicKey (excluding tag, length and unused bits!)
(b) composed of the bits ‘0100’ followed by the least significant 60 bits of the SHA-1 hash of the value of the BIT STRING subjectPublicKey (as above)
(c) by a method that generates unique values, e.g. from a monotonically increasing integer sequence
SubjectKeyIdentifier SHOULD be included in all end user certificates and SHOULD be derived from the public key using method a, or b,
Common PKI Profile: Similarly to CA certificates, CRL issuers’ certificates MUST contain SubjectKeyIdentifier.
Legacy systems may have built the SHA-1 hash value even in another way, by hashing the BIT STRING excluding tag and length, but including the unused bits. Hence, we
stress that processing applications SHOULD NOT assume that the key identifier has been formed using one or the other specific method.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 21 of 67

Table 12: KeyUsage

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 KeyUsage ::= BIT STRING { Defines the purpose of the key pair (public and private key) corresponding to the public
key contained in the certificate

++
(RFC
+-)

++
(RFC
n.a.)

4.2.1.3 [1]

2 digitalSignature (0), signature verification for purpose other than (1), (5) and (6)
(e.g. authentication, integrity check)

+- ++

3 contentCommitment (1), signature expressing the signer’s commitment to the semantic content of the signed data +- ++ [3]
4 keyEncipherment (2), encryption for the purpose of key transport +- ++ [2]
5 dataEncipherment (3), data encryption +- ++ [2]
6 keyAgreement (4), public key used in a key agreement protocol (e.g. Diffie -Hellmann) +- ++
7 keyCertSign (5), verification of a signature over a certificate (may be set only in CA certificates) +- ++
8 crlSign (6), verification of a signature over a CRL +- ++
9 encipherOnly (7), if the keyAgreement bit is set, the public key may only be used to encrypt data +- ++
10 decipherOnly (8) } if the keyAgreement bit is set, the public key may only be used to decrypt data +- ++

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 22 of 67

[1] [RFC5280]: This extension MAY be included in certificates and, when present, SHOULD be marked critical. There are no further constraints regarding the usage of
individual flags.
 [ETSI-CPN]: Key usage in end entity certificates for natural persons is restricted to one of the following settings: contentCommitment bit set (A), contentCommit ment and
digitalSignature bits set (B), digitalSignature bit set (C), digitalSignature and keyEncipherment bits set (D), and keyEncipherment bit set (E).
Qualified end entity certificates are limited to types A, B or C.
For certificates to be used to validate commitment to signed content, such as electronic signatures on agreements and/or transactions, ETSI RECOMMENDS type A
settings only.

Common PKI Profile: This extension MUST always be included in CA and end entity certificates and MUST be marked critic al. The following restrictions apply for:
• CA certificates: the keyCertSign bit MUST be set. Additionally, the crlSign bit MAY be set too, if the CA uses the corresponding key to sign CRLs too. Other bits

MUST NOT be set.
• CRL signer certificate: Only the crlSign bit MUST be set in the certificate of an instance signing (so-called indirect) CRLs of certificates which are issued by another

CA instance.
• OCSP responder certificates: The crlSign bit and only this bit MUST be set, if the CA uses the corresponding key to sign CRLs. OCSP responders are issued end-entity

certificates with only the contentCommitment bit set and including the ExtendedKeyUsage extension with only the id-kp-OCSPSigning option (see Table 21).
• TSP certificates: Time stamping authorities are issued end-entity certificates with only the contentCommitment bit set and including the ExtendedKeyUsage extension

with only the id-kp-timeStamping option (see Table 21).
• End entity (EE) user certificates (non-qualified): All permitted purposes MUST be stated in end entity certificates, so that client components are able to find the

certificate intended for a specific action. In particular, it is RECOMMENDED that CAs is sue separate certificates for the purposes of expressing commitment to the
signed content (only contentCommitment set), authentication (only digitalSignature and optional, if required for technical reasons of the intended applications,
keyEncipherment set) and encryption (only dataEncipherment and keyEncipherment set).

• End entity (EE) qualified certificates (only defined for purposes of electronic signatures): The contentCommitment bit and only this bit MUST be set, if these
certificates are to be used to validate commitment to signed content, such as electronic signatures on agreements and/or transactions. These certificates MUST NOT be
used for other purposes, like authentication or encryption.

 Note however that the sole indicator whether a certificate is intended to be qualified is not the KeyUsage extension but an appropriate QCStatement (see Table 25).
Compliant CAs MUST issue certificates that are assigned to exactly one of these types (from CA to EE qualified certificates). In this way, relying software is always able
to assign the certificate the intended key purpose from the above list.
As for the DER-encoding of the BIT STRING value: for the sake of a unique encoding form, the DER-encoding SHOULD be trimmed to the minimal number of octets, i.e.
if the decipherOnly bit is not set, the BIT STRING value SHOULD be represented on one single octet. Processing components MUST accept any number of value octets.

[2] Note on implementation: some legacy systems mark encryption certificates of end entities by setting exclusively the dataEncipherment bit, other by setting exclusively the
keyEncipherment bit. Hence, client components SHOULD use the condition dataEncipherment OR keyEncipherment to recognize encryption certificates.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 23 of 67

[3] In April 2004 the ITU-T working group on X.509 renamed – without affecting its semantics – bit 1 of the KeyUsage extension to contentCommitment and declared the
previous identifier nonRepudiation as being deprecated. The semantics of signature related key usage bits was clarified by ITU-T X.509 as follows:
• digitalSignature: for verifying digital signatures that are used with an entity authentication service, a data origin authentication service or/and an integrity service.
• contentCommitment: for verifying digital signatures which are intended to signal that the signer is committing to the content being signed. The type of commitment the

certificate can be used to support may be further constrained by the CA, e.g. through a certificate policy. The precise type of commitment of the signer e.g. "reviewed
and approved" or "with the intent to be bound", may be signalled by the content being signed, e.g. the signed document itself or some additional signed information.
Since a content commitment signing is considered to be a digitally signed transaction, the digitalSignature bit need not be set in the certificate. If it is set, it does not
affect the level of commitment the signer has endowed in the signed content.

• keyCertSign : for verifying a CA's signature on certificates. Since certificate signing is considered to be a commitment to the content of the certificate by the CA,
neither the digitalSignature bit nor the contentCommitment bit need be set in the certificate. If either (or both) is set, it does not affect the level of commitment the
signer has endowed in the signed certificate.

Common PKI Profile: Both identifiers MAY be treated as synonyms , but in contrast to RFC 5280 the newer name contentCommitment SHOULD be used.
In order to alleviate end users' burden to differentiate between a declaration of intent on one hand and user or data origin authentication and integrity purposes of a digital
signature operation on the other hand, it is RECOMMENDED to include at most one of the contentCommitment (for declaration of intent) and digitalSignature (for all
other purposes) bits in a certificate. If nevertheless both bits are set, the resulting level of commitment MUST be assessed with regard to the contentCommitment bit.
Note that according to [RFC5246]chapters 7.4.2 and 7.4.6 certificates for TLS authentication may, depending on the specific key and algorithm type used for the applicable
TLS cipher suites, may require the keyEncipherment or keyAgreement key usage bit set in addition to or even instead of the digitalSignature bit.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 24 of 67

Table 13: (obsolete)

Table 14: CertificatePolicies

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 CertificatePolicies ::= SEQUENCE SIZE (1..MAX) OF
 PolicyInformation

a non-empty list of policy terms +- ++ 4.2.1.4 #2 [1]

2 PolicyInformation ::= SEQUENCE { [2]
3 policyIdentifier CertPolicyId, an OID representing the policy #5
4 policyQualifiers SEQUENCE SIZE(1..MAX) OF

 PolicyQualifierInfo OPTIONAL }
a non-empty list of policy qualifiers +- ++ #6

5 CertPolicyId ::= OBJECT IDENTIFIER
6 PolicyQualifierInfo ::= SEQUENCE {
7 policyQualifierId PolicyQualifierId, #12
8 qualifier ANY DEFINED BY policyQualifierId }
9 id-qt OBJECT IDENTIFIER ::= {id-pkix 2}
10 id-qt-cps OBJECT IDENTIFIER ::= {id-qt 1} The OID referring to qualifier type CPSUri
11 id-qt-unotice OBJECT IDENTIFIER ::= {id-qt 2} The OID referring to qualifier type UserNotice
12 PolicyQualifierId ::= OBJECT IDENTIFIER

 {id-qt-cps | id-qt-unotice }

13 CPSUri ::= IA5String An URL pointing to a CPS (Certification Practice Statement)
14 UserNotice ::= SEQUENCE { This user notice is intended to be displayed for a relying party

whenever using this certificate.

15 noticeRef NoticeReference OPTIONAL, A reference to a textual statement #17
16 explicitText DisplayText OPTIONAL } A textual statement explicitly written in the certificate #20 [3]
17 NoticeReference ::= SEQUENCE {
18 organization DisplayText, Name of an organization #20
19 noticeNumber SEQUENCE OF INTEGER } a number identifying a particular textual statement prepared by

the organization

20 DisplayText ::= CHOICE { [3]
20a ia5String IA5String (SIZE (1..200)), +- ++
21 visibleString VisibleString (SIZE (1..200)), -- +-
22 bmpString BMPString (SIZE (1..200)), -- +-
23 utf8String UTF8String (SIZE (1..200)) } + ++

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 25 of 67

[1] [RFC5280]: In an end entity certificate, these policy information terms indicate the policy under which the certificate has been issued and the purposes for which the
certificate may be used. In a CA certificate, these policy information terms limit the set of policies for certification paths which include this certificate. When a CA does
not wish to limit the set of policies for certification paths which include this certificate, it MAY assert the special policy anyPolicy, with a value of { 2 5 29 32 0 }.
If this extension is critical, the path validation software MUST be able to interpret this extension (including the optional qualifier), or MUST reject the certificate.
The number of policy terms in the list is not limited.
Common PKI Profile: For the sake of vertical interoperability, especially for the successful verification of signed documents and certificates outside the Common PKI
application group, the extension SHOULD NOT be marked critical. As Common PKI compliant systems are supposed to employ rather strict security policies, receivers of
such documents might assume an “appropriately high” level of security, without recognizing the particular policy. It is the responsibility of the receiving person to employ
appropriate software in critical applications that checks the certification policy.
A further reason for marking this extension non-critical is that qualified certificates may alternatively be marked in the QCStatements extension (see Table 25). Non-
Common PKI-compliant client software may recognize those indicators and ignore this extension, without loosing information on the applying policy.

[2] [RFC5280]: PolicyInformation SHOULD only contain an OID. Where an OID alone is insufficient, [RFC5280] strongly recommends using the identifiers defined above.
[3] [RFC5280]: Conforming CAs SHOULD use the UTF8String encoding for explicitText, but MAY use IA5String. Conforming CAs MUST NOT encode explicitText as

VisibleString or BMPString . The explicitText string SHOULD NOT include any control characters (e.g., U+0000 to U+001F and U+007F to U+009F). When the
UTF8String encoding is used, then all character sequences SHOULD benormalized according to Unicode normalization form C (NFC) [NFC].

Table 15: PolicyMappings

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN
CA/EE
CERT

PROC RFC5280 CO . PKI
NO
TES

1 PolicyMappings ::= SEQUENCE SIZE (1..MAX) OF SEQUENCE { A non-empty list of equivalent policies. The issuing CA
considers its issuerDomainPolicy to be equivalent to the subject
CA’s subjectDomainPolicy.

+-/-- +- 4.2.1.5

2 issuerDomainPolicy CertPolicyId, 4.2.1.5 T14.#5
3 subjectDomainPolicy CertPolicyId } 4.2.1.5 T14.#5

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 26 of 67

Table 16: SubjectAltNames and IssuerAltNames

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 SubjectAltNames ::= GeneralNames Alternative technical names of the subject +- + 4.2.1.6 T8 [1]
[2]

2 IssuerAltNames ::= GeneralNames Alternative technical names of the issuing CA +-

+ 4.2.1.7 T8 [1]
[3]

[1] [RFC5280]: If the extension present, the GeneralNames structure MUST be non-empty. Because the alternative name is bound to the public key, all parts of the alternative
name MUST be verified by the issuing CA. Multiple name forms and multiple instances of each name form MAY be included.

[2] [RFC5280]: if the alternative name serves as a means for identification of the subject (especially if the subject field is empty), the extension MUST be marked as critical.
Common PKI Profile: Since the subject field uniquely identifies the subject, the SubjectAltNames extension SHOULD NOT be marked critical by compliant CAs.
Compliant CAs MUST publish end entity and CA certificates. It is RECOMMENDED that certificates are downloadable from an LDAP server. The corresponding LDAP-
URL, including the DName as described in [RFC4516], MAY then be included in the SubjectAltNames extension of the PKCs. FTP- and/or HTTP-URLs pointing to the
certificate MAY also be included, if it is accessible via FTP or HTTP, as described in Part 4. This information may be useful to locate other certificates of the EE or CA.

[3] Common PKI Profile: Compliant CAs MUST publish end entity and CA certificates. It is RECOMMENDED that certificates are downloadable from an LDAP server.
The corresponding LDAP-URL, including the DName as described in [RFC4516], MAY then be included in the in the IssuerAltNames extension of the issued PKCs. FTP-
and/or HTTP-URLs pointing to the certificate MAY also be included, if it is accessible via FTP or HTTP, as described in Part 4.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 27 of 67

Table 17: SubjectDirectoryAttributes

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN
CA/EE
CERT

PROC RFC5280 CO . PKI
NO
TES

1 SubjectDirectoryAttributes ::= Attributes This extension may contain further X.500 attributes of the
subject

-/+- +
(RFC
3739
++)

4.2.1.8 #2 [1]
[2]

2 Attributes ::= SEQUENCE SIZE (1..MAX) OF Attribute #3
3 Attribute ::= SEQUENCE {
4 type AttributeType #6
5 values SET OF AttributeValue } #7 [2]
6 AttributeType ::= OBJECT IDENTIFIER
7 AttributeValue ::= ANY
[1] [RFC3739]: The PKIX working group has recognized the demand that personal identification data can be stored in a qualified public key certificate or in a separate

attribute certificate (e.g. if the PKC should not make this info public). RFC3739 defines a couple of new DName attributes for this purpose (dateOfBirth, placeOfBirth,
gender, countryOfCitizenship, countryOfResidence). According to RFC3739, these attributes are to be stored in the SubjectDirectoryAttributes extension of the public key
certificate. RFC3739 explicitly states that new attribute types MAY be included according to local definitions.
[RFC3281] does not mention, where to record data of this kind.
Common PKI Profile: Qualified PKCs MAY include legal identification data of the subject in the SubjectDirectoryAttributes extension. The same kind of information
MAY be included in attribute certificates as separate attribute (i.e. in the ‘attributes’ field instead of an extension) but using the same SubjectDirectoryAttributes syntax.
The following attributes MAY be inserted by compliant CAs:
Standard attributes: commonName, surname, givenName, title, postalAddress (with the address of permanent residence)
RFC3739 attributes: dateOfBirth, placeOfBirth, gender, countryOfCitizenship, countryOfResidence,
Common PKI attribute: nameAtBirth
Processing components SHOULD be able to recognize this extension/attribute. In addition to the attributes, listed above, they SHOULD be prepared too to receive other
attribute types of Table 7 in this extension.

[2] Type of the value is defined by the type field. (The ’88 syntax of ASN.1 does not allow to indicate this fact.) At least one value is required to be contained in the SET.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 28 of 67

Table 18: BasicConstraints

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN
CA/EE
CERT

PROC RFC5280 CO . PKI
NO
TES

1 BasicConstraints ::= SEQUENCE { Indicates a CA certificate and defines how deep a certificate
may exists below that CA.

++/+- ++ 4.2.1.9 [1]

2 ca BOOLEAN DEFAULT FALSE, ca=TRUE indicates a CA certificate
ca=FALSE or a missing ca element indicates an end entity.
Note that in the DER encoding the DEFAULT value of a SET
or SEQUENCE component SHALL NOT be encoded.

3 pathLenConstraint INTEGER (0..MAX) OPTIONAL } only meaningful if ca=TRUE, indicates how many CA
certificates may be included in the certification path below this
CA. That is, pathLenConstraint=0 indicates that only end
entity certificates may follow in the path. If this field does no
appear, there is no limit to the path length.

[1] [RFC5280] This extension MUST appear as a critical extension in all CA certificates that contain public keys used to validate digital signatures on certificates. This
extension MAY appear as a critical or non-critical extension in CA certificates that contain public keys used exclusively for purposes other than validating digital
signatures on certificates. Such CA certificates include ones that contain public keys used exclusively for validating digital signatures on CRLs and ones that contain key
management public keys used with certificate enrollment protocols. This extension MAY appear as a critical or non-critical extension in end entity certificates.
Common PKI Profile: This extension MAY appear in end entity certificates and MUST appear in CA certificates. It MUST be marked critical.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 29 of 67

Table 19: NameConstraints

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN
CA/EE
CERT

PROC RFC5280 CO . PKI
NO
TES

1 NameConstraints ::= SEQUENCE { Indicates a name space in a CA certificate, in which all
subject names (or subject alternative names) in
subsequent certificates of the path shall be located.

+-/-- ++ 4.2.1.10 [1]

2 permittedSubtrees [0] IMPLICIT GeneralSubtrees OPTIONAL, +- ++ #4 [1]
3 excludedSubtrees [1] IMPLICIT GeneralSubtrees OPTIONAL } +- ++ #4 [1]
4 GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree #5
5 GeneralSubtree ::= SEQUENCE {
6 base GeneralName, T8 [2]
7 minimum [0] IMPLICIT BaseDistance DEFAULT 0, -- - #9 [2]
8 maximum [1] IMPLICIT BaseDistance OPTIONAL } -- - #9 [2]
9 BaseDistance ::= INTEGER (0..MAX)
[1] Inserting this extension in a CA certificates, a CA is able to enforce subordinate CAs to choose names from a special subspace of the directory or of a domain when issuing

further certificates.
[RFC5280]: This extension MUST be included only in CA certificates.
Note that RFC5280-compliant client software MUST check naming constraints as described in RFC5280, if this (always critical) extension is present. This requires the
capability of matching DNames, email addresses, domain names, URI and IP addresses in client software, while other name forms MAY be ignored by the verification
procedure.

[2] [RFC5280]: Syntax and semantics are defined for GeneralName forms email address, DNS name, URI, IP address and directoryName , where directoryName constrains the
subject field whereas the other ones the subjectAltNames field of subordinate certificates. The meaning and format of other forms otherName , ediPartyName , registeredID
are not defined in [RFC5280] and MAY be ignored by the path validation procedure (Part 5). Within this profile, the minimum and maximum fields are not used with any
name forms, thus minimum is always zero, and maximum is always absent.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 30 of 67

Table 20: PolicyConstraints

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 PolicyConstraints ::= SEQUENCE { May be used in CA certificates to constrain path
validation in two ways: it can be used to prohibit policy
mapping or require that each certificate in a path contain
an acceptable policy identifier.

+-/-- ++ 4.2.1.11 [1]

2 requireExplicitPolicy [0] IMPLICIT SkipCerts OPTIONAL, Indicates the maximal number of additional certificates
that may appear in the path before an explicit policy is
required.

 #4

3 inhibitPolicyMapping [1] IMPLICIT SkipCerts OPTIONAL } Indicates the maximal number of additional certificates
that may appear in the path before policyMapping is no
longer permitted.

 #4

4 SkipCerts ::= INTEGER (0..MAX)
[1] [RFC5280]: If the extension is present, at least one optional field MUST be given.

Note that RFC5280-compliant client software MUST check PolicyConstraints as described in RFC5280, if this extension is present and is marked critical.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 31 of 67

Table 21: ExtendedKeyUsage

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 ExtendedKeyUsage ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId Indicates purposes for which the key pair (public and
private key) corresponding to the public key contained in
the certificate can be used, additional to or in place of
those in the KeyUsage extension.

+- ++
(RFC
n.a.)

4.2.1.12 #2 [1]

2 KeyPurposeId ::= OBJECT IDENTIFIER OID designating a single key purpose. [2]
2a anyExtendedKeyUsage OBJECT IDENTIFIER ::= {2 5 29 37 0} Any required extended key usage. +- +- [2a]
3 id-kp OBJECT IDENTIFIER ::= {id-pkix 3} Branch for key purposes OIDs.
4 id-kp-serverAuth OBJECT IDENTIFIER ::= {id-kp 1} TLS Web server authentication

Consistent only with KeyUsage bits
(digitalSignature and/or keyEncipherment) or
keyAgreement,
depending on the key and algorithm type according to the
relevant TLS cipher suites, see [RFC5246] chapter 7.4.2.

+- +-

5 id-kp-clientAuth OBJECT IDENTIFIER ::= {id-kp 2} TLS Web client authentication
Consistent only with KeyUsage bits
digitalSignature or keyAgreement,
depending on the key and algorithm type according to the
relevant TLS cipher suites, see [RFC5246] chapter 7.4.6.

+- +-

6 id-kp-codeSigning OBJECT IDENTIFIER ::= {id-kp 3} Signing downloadable code
Consistent only with KeyUsage bit :
digitalSignature

+- +-

7 id-kp-emailProtection OBJECT IDENTIFIER ::= {id-kp 4} E-mail protection
Consistent only with KeyUsage bits:
digitalSignature, contentCommitment and/or
(keyEncipherment or keyAgreement),
see [RFC3850] chapter 4.4.2.

+- +-

8 id-kp-timeStamping OBJECT IDENTIFIER ::= {id-kp 8} Time stamping
Consistent only with KeyUsage bits:
contentCommitment

+- ++ [2b]

9 id-kp-OCSPSigning OBJECT IDENTIFIER ::= {id-kp 9} Signing OCSP responses

+- ++ [3]

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 32 of 67

[1] [RFC5280]: If the extension is present, then the certificate MUST only be used for one of the purposes indicated. If multiple purposes are indicated the application need
not recognize all purposes indicated, as long as the intended purpose is present. If a certificate contains both a critical key usage field and an extended key usage field, then
both fields MUST be processed independently and the certificate MUST only be used for a purpose consistent with both fields. If there is no purpose consistent with both
fields, then the certificate MUST NOT be used for any purpose.

[2] [RFC5280]: Key purposes may be defined by any organization with a need. Object identifiers used to identify key purposes MUST be assigned in accordance with IANA
or ITU-T Recommendation X.660.
Common PKI Profile: Other key purposes than those listed in this table MAY be included in the ExtendedKeyUsage extension.

[2a] [RFC5280]: Certificate using applications MAY require that a particular purpose be indicated in order for the certificate to be acceptable to that application. If a CA
includes extended key usages to satisfy such applications, but does not wish to restrict usages of the key, the CA can include the special keyPurposeID
anyExtendedKeyUsage. If the anyExtendedKeyUsage key purpose is present, the extension SHOULD NOT be critical.

[2b] [RFC3161]: A TSP certificate MUST include the id-kp-timeStamping OID and MUST NOT include any other key purposes (see Table 12). This extension MUST be
critical.

[3] [RFC2560]: If an OCSP signer is not identical to the issuer of the certificates whose status is asked for, the certificate signer MUST designate this authority to an
authorized responder by issuing a certificate for that entity. The responder’s certificate MUST include the id-kp-OCSPSigning OID in ExtKeyUsage.
 Common PKI Profile: An OCSP responder certificate MUST NOT include any other key purposes than id-kp-OCSPSigning (see Table 12). The responder’s certificate
MAY be issued by any trusted authority. Client software MUST NOT rely on the authorization rules, i.e. they MUST accept responder certificates issued by any trusted
authorities.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 33 of 67

Table 22: CRLDistributionPoints

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN
“DIRECT”/
INDIR.CRL

PROC RFC5280 CO . PKI
NO
TES

1 CRLDistPointSyntax ::= SEQUENCE SIZE (1..MAX) OF
 CRLDistributionPoint

Identifies how CRL information to this
certificate can be obtained.

+/++
(RFC+)

+ 4.2.1.13 #2 [1]
[2]

2 CRLDistributionPoint ::= SEQUENCE {
3 distributionPoint [0] EXPLICIT DistributionPointName OPTIONAL, ++/+- + #6 [2]

[3]
4 reasons [1] IMPLICIT ReasonFlags OPTIONAL, +- + #9 [4]
5 cRLIssuer [2] IMPLICIT GeneralNames OPTIONAL } --/++ + T8 [2]
6 DistributionPointName ::= CHOICE {
7 fullName [0] IMPLICIT GeneralNames, a full DName, URL or similar +- + T8 [5]
8 nameRelativeToCRLIssuer [1] IMPLICIT RelativeDistinguishedName} a DName relative to crlIssuer +- + T5
9 ReasonFlags ::= BIT STRING {
10 unused (0),
11 keyCompromise (1),
12 cACompromise (2),
13 affiliationChanged (3),
14 Superseded (4),
15 cessationOfOperation (5),
16 certificateHold (6),
17 privilegeWithdrawn (7),
18 aACompromise (8) }
[1] Notes on criticality:

Common PKI Profile: If the directory providing validity information about the certificate may be accessed via OCSP, this extension MUST NOT be marked critical. In
other cases, it SHOULD NOT be marked critical, as stated in [RFC5280].

[2] Notes on support:
[RFC5280]: it is RECOMMENDED always to include this extension in certificates.
If no cRLIssuer is specified, the CRL MUST be issued by the issuer of the revoked certificates in the CRL. (Otherwise we speak about an indirect CRL.)
If the certificate issuer is also the CRL issuer, then the cRLIssuer field MUST be omitted and the distributionPoint field MUST be present.
Common PKI Profile: Compliant CAs MUST issue CRLs and publish them via an LDAP-server. In addition to the LDAP service, the CA MAY publish CRLs via HTTP
for cases, where some targeted clients cannot access the LDAP service (e.g. because of a local firewall policy).
The CDP extension MAY contain more than one CDP. These have to be interpreted as alternatives. If access to a specific CDP fails, clients MAY try to access other
alternatives. Delta-CRLs, if present in a CDP, MUST be present at the same location as the complete CRL. In the case of segmented CRLs, all segments MUST be present

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 34 of 67

at the CDP.

Basically, there are two different types of CRLs:

1) “direct” CRL: the CA that issued the certificate issues the corresponding CRLs too. In this case, if the CRLDistributionPoints is not included, the CRL MUST be
located at the same LDAP node (in the certificateRevocationLists attribute) as the CA certificate. If it is located at another LDAP node or in another attribute, the
corresponding DName (relative to the CA-node or absolute in the same directory) or LDAP-URL MUST be supplied in the distributionPoint field. Following
[RFC5280], the cRLIssuer field MUST NOT be present in this “direct” case.

2) indirect CRLs are issued, i.e. the CRLs are signed with a key different from the key of the CA. In this case, the CRLDistributionPoints extension MUST be
present and MUST include the cRLIssuer field containing the subject DName of the CRL-issuer and resp. of its signing certificate. The distributionPoint field
MAY be present, pointing to the CRL (via a DName relative to the node of the CRL-issuer or absolute in the same directory; or via an URL). If the
distributionPoint field is absent, the CRL MUST be located at the node of the CRL-issuer (in the certificateRevocationLists attribute).

For the sake of vertical interoperability, it is RECOMMENDED that conforming applications process indirect CRLs in order to validate the revocation status of certificates.
Indirect CRLs are frequently encountered in the domain of qualified certificates, where, however, the preferred mechanism of revocation checking is OCSP instead of CRL
checking. Therefore support for indirect CRLs is not REQUIRED for applications adhering to the Common PKI core standard (see the Common PKI SigG profile for
requirements on SigG-conforming applications).

[3] CHOICE objects are always EXPLICITly tagged, independent of the default tagging modus.
[4] [RFC5280]: If no reasons are specified or only one CRL appears in this extension, the CRL MUST include revocations for all reasons
[5] [RFC5280]: If this field contains an URL, it MUST be a pointer to the current CRL. Accepted URL formats are described in [RFC5280] Section 4.2.1.7.

Common PKI Profile: If URL forms are present, the fullName field MUST at least contain the LDAP-URL of the LDAP server, including the DName of the node holding
the CRL, as specified in [RFC4516]. Optionally, the fullName field MAY contain an FTP-URL and/or a HTTP-URL, if the CRL is available via FTP or HTTP. Directory
access methods are described in Part 4 (Operational Protocols) of this specification.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 35 of 67

Table 22a: InhibitAnyPolicy

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN
CA/EE
CERT

PROC RFC5280 CO . PKI
NO
TES

1 InhibitAnyPolicy ::= SkipCerts Indicates that the special anyPolicy OID is not considered an
explicit match for other certificate policies except when it
appears in an intermediate self-issued CA certificate.

+-/-- + 4.2.1.14 [1]

2 SkipCerts ::= INTEGER (0..MAX) The value indicates the number of additional non-self-issued
certificates that may appear in the path before anyPolicy is no
longer permitted. For example, a value of one indicates that
anyPolicy may be processed in certificates issued by the
subject of this certificate, but not in additional certificates in
the path.

[1] [RFC5280]: Conforming CAs MUST mark this extension as critical.

Table 22b: FreshestCRL

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN
CA/EE
CERT

PROC RFC5280 CO . PKI
NO
TES

1 FreshestCRL ::= SEQUENCE SIZE (1..MAX) OF
 CRLDistributionPoint

This extension (a.k.a. DeltaCRLDistributionPoint) identifies
how delta CRL information is obtained.

+-/+- + 4.2.1.15 T22#2 [1]

[1] [RFC5280]: The same syntax is used for this extension and the cRLDistributionPoints extension. The same conventions apply to both extensions.
Each distribution point name provides the location at which a delta CRL for the complete CRL pertaining to this certificate can be found.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 36 of 67

2.3.2 PKIX Private Certificate Extensions

Table 23: AuthorityInfoAccess

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 id-pkix OBJECT IDENTIFIER ::= {1 3 6 1 5 5 7} PKIX OID 4.2.2
2 id-pe OBJECT IDENTIFIER ::= {id-pkix 1} OID for PKIX private extensions 4.2.2
3 AuthorityInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF

 AccessDescription
Contains access information to online validation service
and/or to policy information of the CA issuing this
certificate.

+- +
(RFC
n.a.)

4.2.2.1 #4

4 AccessDescription ::= SEQUENCE {
5 accessMethod OBJECT IDENTIFIER, Indicates the type and format of the access info
6 accessLocation GeneralName } Location of the info, usually in form of an URL T8
7 id-ad OBJECT IDENTIFIER ::= {id-pkix 48} 4.2.2.1
8 id-ad-ocsp OBJECT IDENTIFIER ::= {id-ad 1} an OID for the case, when accessLocation points to an

OCSP service of the issuing CA
+- ++ 4.2.2.1 [1]

9 id-ad-caIssuers OBEJCT IDENTIFIER ::= {id-ad 2} an OID for the case, when the referenced information
lists CAs that have issued certificates for the issuer of
this certificate.

+- +- 4.2.2.1 [2]

[1] Common PKI Profile: If the CA issuing the certificate offers OCSP service, its URL MUST be contained in this extension. The OCSP server MUST be accessed using
HTTP. See also Part4 (Operational Protocols) of this specification.

[2] Common PKI Profile: Common PKI enforces that the certification path can always be unambiguously determined using information available in a signed document
respectively certificate. Hence, there is no need to list issuers of certificates of the CA. It is however allowed to be included, since some software uses the caIssuer
information to access and retrieve CA certificates.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 37 of 67

Table 23a: SubjectInfoAccess

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 SubjectInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF
 AccessDescription

Indicates how to access information and services for the
subject of the certificate.

+- +
(RFC
n.a.)

4.2.2.2 T23#4

2 id-ad-caRepository OBJECT IDENTIFIER ::= {id-ad 5} An OID for the case, when the subject is a CA that
publishes certificates it issues in a repository.

+- ++ 4.2.2.2 T23#7 [1]

3 id-ad-timeStamping OBEJCT IDENTIFIER ::= {id-ad 3} An OID for the case, when the subject offers
timestamping services using the Time Stamp Protocol

+- +- 4.2.2.2 T23#7 [2]

[1] [RFC5280]: When the accessLocation is a directoryName , the information is to be obtained by the application from whatever directory server is locally configured. When
the extension is used to point to CA certificates, the entry for the directoryName contains CA certificates in the crossCertificatePair and/or cACertificate attributes as
specified in [RFC4523].
Where the information is available via LDAP, the accessLocation SHOULD be a uniformResourceIdentifier. The LDAP URI [RFC4516] MUST include a <dn> field
containing the distinguished name of the entry holding the certificates, MUST include an <attributes> field that lists appropriate attribute descriptions for the attributes that
hold the DER encoded certificates or cross-certificate pairs [RFC4523], and SHOULD include a <host> (e.g., <ldap://ldap.example.com/cn=CA,
dc=example,dc=com?cACertificate;binary,crossCertificatePair;binary>).
Where the information is available via HTTP or FTP, accessLocation MUST be a uniformResourceIdentifier and the URI MUST point to either a single DER encoded
certificate as specified in [RFC2585] or a collection of certificates in a BER or DER encoded "certs -only" CMS message.
Common PKI Profile: The extension MAY include LDAP, HTTP or FTP URLs if the respective service is offered. Other name forms SHOULD NOT be used.

[2] [RFC5280]: Where the timestamping services are available via HTTP or FTP, accessLocation MUST be a uniformResourceIdentifier. Where the timestamping services are
available via electronic mail, accessLocation MUST be an rfc822Name. Where timestamping services are available using TCP/IP, the dNSName or iPAddress name forms
may be used.
Common PKI Profile: According to the TSP profile defined in Common PKI Part 4, a HTTP URL SHOULD be used. Other name forms SHOULD NOT be used.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 38 of 67

Table 24: BiometricData

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC3739 CO . PKI

NO
TES

1 BiometricSyntax ::= SEQUENCE OF BiometricData +- + 3.2.5 #2
2 BiometricData ::= SEQUENCE {
3 typeOfBiometricData TypeOfBiometricData, #7
4 hashAlgorithm AlgorithmIdentifier, ID of the hash algorithm used to hash the biometric image

data
 T4

5 biometricDataHash OCTET STRING, Instead of storing the entire biometric image in the
certificate, only a hash of that image occurs here.

6 sourceDataUri IA5String OPTIONAL } An URL to the entire biometric image may be stored here.
7 TypeOfBiometricData ::= CHOICE {
8 predefinedBiometricType PredefinedBiometricType, #10
9 biometricDataId OBJECT IDENTIIFER }
10 PredefinedBiometricType ::= INTEGER {

 picture(0),
 handwritten-signature(1) }

 [1]

[1] [RFC3739]: It is RECOMMENDED that biometric data in this extension is limited to information types suitable for human verification, i.e. where the decision of whether
the information is an accurate representation of the subject is naturally performed by a person.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 39 of 67

Table 25: Qualified Certificate Statement

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC3739 CO . PKI

NO
TES

0 id-qcs OBJECT IDENTIFIER ::= { id-pkix 11 } A.1 T23#1
1 QCStatements ::= SEQUENCE OF QSStatement A non-empty list of statements +- +

3.2.6
#2 [1]

2 QSStatement ::= SEQUENCE { [1]
3 statementId OBJECT IDENTIFIER,
4 statementInfo ANY DEFINED BY statementId OPTIONAL }
5 id-qcs-pkixQCSyntax-v1 OBJECT IDENTIFIER ::= {id-qcs 1} an OID to be used as statementId and indicating

conformance with the syntax and semantics defined in
[RFC3039]. Refers to type SemanticsInformation below.

- +

5a id-qcs-pkixQCSyntax-v2 OBJECT IDENTIFIER ::= {id-qcs 2} an OID to be used as statementId and indicating
conformance with the syntax and semantics defined in
[RFC3739]. Refers to type SemanticsInformation below.

+- +

6 SemanticsInformation ::= SEQUENCE { Data type to be used in conjunction with
id-qcs-pkixQCSyntax-v1.

 [2]

7 semanticsIdentifier OBJECT IDENTIFIER OPTIONAL, SHALL contain an OID defining semantics for attributes and
names in certificate fields.

8 nameRegistrationAuthorities NameRegistrationAuthorities
 OPTIONAL }

Registration authority responsible for registration of
attributes and names associated with the subject.

 #9

9 NameRegistrationAuthorities ::= SEQUENCE SIZE(1..MAX) OF
 GeneralName

some registeredID of the semantics or of a certificate policy
may occur here

 T8

10 id-etsi-qcs OBJECT IDENTIFIER ::= { 0 4 0 1862 1 } ETSI ID for qualified statements
11 id-etsi-qcs-QcCompliance OBJECT IDENTIFIER ::=

 {id-etsi-qcs 1}

an OID to be used as statementId and indicating that the
certificate has been issued in accordance with the EU-
directive [ECDIR] as implemented in the country under
which law the issuer CA operates. When inserting this OID,
the statementInfo field is to be omitted.

+- +

[ETSI-QC]
5.2.1

#10

12 id-etsi-qcs-QcLimitValue OBJECT IDENTIFIER ::=
 {id-etsi-qcs 2}

an OID to be used as statementId in conjunction with the
QcEuLimitValue statement below

+- +

[ETSI-QC]
5.2.2

#10

13 QcEuLimitValue ::= MonetaryValue This statement limits the value of transactions, for which the
certificate can be used.

+- +

[ETSI-QC]
5.2.2

#14

14 MonetaryValue ::= SEQUENCE {
15 currency Iso4217CurrencyCode, ISO 4217 code of the currency
16 amount INTEGER, limit value = amount * 10exponent

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 40 of 67

17 exponent INTEGER }
18 Iso4217CurrencyCode ::= CHOICE {
19 alphabetic PrintableString, + ++
20 numeric INTEGER(1..999) } - ++
21 id-etsi-qcs-QcRetentionPeriod OBJECT IDENTIIFER ::=

 {id-etsi-qcs 3}
an OID to be used as statementId in conjunction with the
QcRetentionPeriod statement below

+- +

[ETSI-QC]
5.2.3

#10

22 QcRetentionPeriod ::= INTEGER CAs or a relevant name registration authority retains external
information about the owner of qualified certificates. This
information allows identifying the physical person in case of
dispute. This statement indicates how many years after the
expiry date of the certificate such information will be
retained.

+- +

23 id-etsi-qcs-QcSSCD OBJECT IDENTIIFER ::=
 {id-etsi-qcs 4}

an OID to be used as statementId and indicating that the CA
vouches that the private key associated with the public key
in the certificate is stored in an SSCD (Secure Signature
Creation Device) according to Annex III of [ECDIR]. When
inserting this OID, the statementInfo field is to be omitted.

+- +

[ETSI-QC]
5.2.4

#10

[1] Common PKI Profile: Based on the argumentation presented for CertificatePolicies (Table 14.[1]), the extension SHOULD NOT be marked critical. It is the
responsibility of the receiving person, to check the conditions in critical applications.

[2] [RFC3739]: At least one of semanticsIdentifier and nameRegistrationAuthorities must be present.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Public Key Certificate Format Common PKI Part 1 – Page 41 of 67

Table 26: OCSPNoCheck

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 CO . PKI

NO
TES

1 id-ad OBJECT IDENTIFIER ::= { id-pkix 48 } Arc for access descriptors RFC5280
2 id-ad-ocsp OBJECT IDENTIFIER ::= { id-ad 1 } RFC5280 #1
3 id-pkix-ocsp OBJECT IDENTIFIER ::= { id-ad-ocsp } 4.2.1 #2
4 id-pkix-ocsp-nocheck OBJECT IDENTIIFER ::=

 {id-pkix-ocsp 5}
 4.2.2.2.1 #3

5 OCSPNoCheck ::= NULL +- + 4.2.2.2.1 [1]
[1] [RFC2560]: OCSP clients need to know how to check that an authorized OCSP responder's certificate has not been revoked. A CA MAY specify that an OCSP client can

trust a responder for the lifetime of the responder's certificate, i.e. the client need no CRL information. The CA does so by including the extension OCSPNoCheck . This
SHOULD be a non-critical extension. The value of the extension should be NULL. CAs issuing such a certificate should realized that a compromise of the responder's key,
is as serious as the compromise of a CA key used to sign CRLs, at least for the validity period of this certificate. CA's may choose to issue this type of certificate with a
very short lifetime and renew it frequently.
Common PKI Profile: Compliant OCSP responders SHOULD not use this option, status information on the responder’s certificate SHOULD always be available.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 42 of 67

3 Attribute Certificate Format

The format for attribute certificates presented here is compatible to the attribute certificate format v1 as specified in the 1997 X.509 standard
[X.509:1997]. The PKIX attribute certificate profile [RFC3281], based on attribute certificate format v2 of X.509 [X.509:2005], has also been
considered here. The attributes and extensions defined in [RFC3281] are not yet subject of this version of Common PKI.

An attribute certificate may be issued as a separate document or in conjunction with a particular signature key certificate (the base certificate). In the
latter case, the validity of the attribute certificate expires at the end of the validity period of the base certificate at the latest. An attribute certificate
can be issued and revoked independently of the corresponding base certificate.

Table 27: AttributeCertificate

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC3281 CO . PKI

NO
TES

1 AttributeCertificate ::= SEQUENCE { 4.1
2 acinfo AttributeCertificateInfo, the DER-encoding of this “to be signed” part of the data structure

will be signed by the CA
 T28

3 signatureAlgorithm AlgorithmIdentifier, an identifier of the signature algorithm used by the CA to sign this
certificate

 T4

4 signatureValue BIT STRING } the signature of the CA represented as BIT STRING

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 43 of 67

Table 28: AttributeCertificateInfo

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC3281 CO . PKI

NO
TES

1 AttributeCertificateInfo ::= SEQUENCE { 4.1
2 version AttCertVersion DEFAULT v1, Version number of the attribute certificate format #13 [1]
3 subject CHOICE { Information identifying the subject of this certificate: [2]

[3]
4 baseCertificateID [0] EXPLICIT IssuerSerial, - either as a reference to his/her base certificate +- ++ #14
5 subjectName [1] EXPLICIT GeneralNames }, - or his/her name +- ++ T8
6 issuer GeneralNames, Name of the issuer of this certificate T8 [4]

[5]
7 signature AlgorithmIdentifier, an identifier of the signature algorithm used by the CA to sign

this certificate.
 T4 [6]

8 serialNumber CertificateSerialNumber, Serial number of the certificate T2.#13 [7]
9 attrCertValidityPeriod AttCertValidityPeriod, Validity period of the certificate #18 [8]
10 attributes SEQUENCE OF Attribute, a list of certificate attributes that the actual “useful” content of

the attribute certificate
 T17 [9]

11 issuerUniqueID UniqueIdentifier OPTIONAL, a unique identifier for the issuer, if issuer DName is reused over
time

-- + T2.#17 [10]

12 extensions Extensions OPTIONAL } Extensions ++ ++ T9
13 AttCertVersion ::= INTEGER { v1(0) } Version number of the attribute certificate format 4.1 [1]
14 IssuerSerial ::= SEQUENCE { A reference to a certificate 4.1 [2]
15 issuer GeneralNames, Name of the issuer of the certificate T8
16 serial CertificateSerialNumber, Serial number of the certificate T2.#13
17 issuerUID UniqueIdentifier OPTIONAL } Unique ID of the certificate -- + T2.#17 [10]
18 AttCertValidityPeriod ::= SEQUENCE {

 notBeforeTime GeneralizedTime,
 notAfterTime GeneralizedTime }

 4.1 [8]

[1] [RFC3281] enforces v2(1)
Common PKI Profile: version = v1(0) in this profile because of incompatibilities of the data structure in v1 and resp. v2 (see [3] and [5]).
Hence, v2 certificates cannot be processed by client software compliant with previous versions of Common PKI (ISIS-MTT) and therefore only with v1.

[2] [RFC3281]: In a general context, the baseCertificateID option SHOULD be used. The baseCertificateId.issuer field MUST contain exactly one directoryName that is
identical to the issuer DName of the base certificate.
The baseCertificateId.issuerUniqueID field MUST be filled exactly then, when the issuerUniqueID field of the base certificate is present. In this case unique ID of the base
certificate MUST be assigned to baseCertificateId.issuerUniqueID.
When the subjectName option is used, it SHOULD contain only one name. If a base certificate exist, the subject name or, if not present, one subjectAltName of the base
certificate SHOULD be inserted.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 44 of 67

[3] ATTENTION! Attribute certificate formats v1 and v2 differ at this point: v2 contains a ‘holder’ field, the syntax of which is not compatible with that of ‘subject’ in v1.
[4] [RFC3281]: the issuer field MUST contain exactly one directoryName with the DName of the issuer.

Common PKI Profile: Besides containing exactly one directoryName element, as required above, issuer MAY include (as the IssuerAltNames extension is not supported
in ACs) further alternative name forms as follows. Compliant CAs MUST publish end entity and CA certificates. It is RECOMMENDED that certificates are downloadable
from an LDAP server. The corresponding LDAP-URL, including the DName as described in [RFC4516], MAY then be included in the in the issuer field of the issued
ACs. FTP- and/or HTTP-URLs pointing to the certificate MAY also be included, if it is accessible via FTP or HTTP, as described in Part 4.

[5] ATTENTION! Attribute certificate formats v1 andv2 differ at this point: [RFC3281]contains a CHOICE object at this position, the first option of which is compatible with
‘issuer’.

[6] Content must be the same as signatureAlgorithm in Table 27.3
[7] [RFC3281]: The same applies as to the serialNumber field of key certificates: the serial number must be a positive integer, not longer than 20 octets (1 ≤ SN < 2159,

MSB=0 indicates the positive sign!). Processing components must be able to interpret such long numbers.
The issuer name and the serial number MUST identify a unique certificate.
Common PKI Profile: The uniqueness requirement is extended to all kind of certificates (i.e. for PKCs as well as ACs). The reason for that is to allow the same CA to
issue PKCs as well as ACs (which is the case in current systems) and furthermore to allow the same CRL to contain entries to PKCs as well as to ACs. Note, that
[RFC3281] forbids CAs to issue PKCs and ACs at the same time.

[8] Common PKI Profile: Both GeneralizedTime fields must be encoded according to the format YYYYMMDDHHMMSSZ.
[9] Common PKI Profile: The attributes field gives information about the certificate holder. The syntax allows attributes to contain a SET OF values, i.e. be multi-valued. In

the attributes SEQUENCE, each attributeType OID may occur only once. Processing components MUST be able to handle multiple values for all attribute types.
The attributes SEQUENCE MUST contain at least one attribute.

[10] Common PKI Profile: issuerUniqueID is supposed to contain subjectUniqueID of the CA’s certificate. Since Common PKI-compliant CA certificates must not use
uniqueIDs, attribute certificates MUST NOT include issuerUniqueID either.

[11] [RFC3281]: The extensions field generally gives information about the attribute certificate as opposed to information about the certificate holder.
Common PKI Profile: the same guidelines have been applied while developing this specification.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 45 of 67

3.1 Attribute Certificate Attributes

Table 29: An overview of attribute certificate attributes

SUPPORT REFERENCES # EXTENSION OID SEMANTICS MULTI-
VALUED GEN PROC RFC CO . PKI

NO
TES

 RFC3281 ATTRIBUTES
(NOT YET PART OF COMMON PKI)

 RFC3281

1 SvceAuthInfo {id-aca 1} This service authentication info identifies the AC holder by a
name to a server or service.

Y -- +- 4.4.1 n.a. [1]

2 AccessIdentity {id-aca 2} Identifies the AC holder to a server or service. Y -- +- 4.4.2 n.a. [1]
3 ChargingIdentity {id-aca 3} Identifies the AC holder for charging purposes. N -- +- 4.4.3 n.a. [1]
4 Group {id-aca 4} Group membership of the AC holder N -- +- 4.4.4 n.a. [1]
5 Role {id-at 72} Role allocation of the AC holder Y -- +- 4.4.5 n.a. [1]
6 Clearance {2 5 1 5 55} Clearance information about the AC holder Y -- +- 4.4.6 n.a. [1]
 COMMON PKI

PRIVATE ATTRIBUTES
 [2]

7 Procuration {id-commonpki-at
2}

Procuration information Y +- +- n.a. T29a

8 Admission {id-commonpki-at
3}

Professional information N +- +- n.a. T29b

9 MonetaryLimit {id-commonpki-at
4}

Monetary limit for transactions.
The QcEuMonetaryLimit QC statement MUST be used in new
certificates in place of the extension/attribute MonetaryLimit
since January 1, 2004. For the sake of backward compatibility
with certificates already in use, components SHOULD support
MonetaryLimit (as well as QcEuLimitValue).

N -- +- n.a. T29c [3]
[4]

10 DeclarationOfMajority {id-commonpki-at
5}

A declaration of majority N +- +- n.a. T29d

11 Restriction {id-commonpki-at
8}

Some other restriction regarding the usage of this certif icate. Y +- +- n.a. T29e [3]

12 AdditionalInformation {id-commonpki-at
15}

Some other information of non-restrictive nature regarding the
usage of this certificate.

Y +- +- n.a. T29f

13 SubjectDirectoryAttributes {2 5 29 9} Personal identification data.
The SubjectDirectoryAttributes syntax is used for this purpose.

N +- +- n.a. T17 [5]

14 QcEuLimitValue
id-etsi-qcs-QcLimitValue

{id-etsi-qcs 2} Instead of including it in a QCStatements extension, a monetary
limit MAY be specified in an attribute (not an extension) using
this QC statement syntax.

N +- +- n.a. T25#13 [3]
[4]

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 46 of 67

[1] These extensions are part of [RFC3281].
Common PKI Profile: These extensions are NOT YET PART of the current version of Common PKI.

[2] These attributes were originally defined in the optional SigG-Profile of Common PKI. Applications conforming to the Common PKI core specification MAY include them
in attribute certificates.

[3] Common PKI Profile: Attribute certificates with restrictive content MUST always be included in the signed document.
[4] Common PKI Profile: In new certificates, MonetaryLimit MUST be replaced by QcEuLimitValue, defined in [ETSI-QC]. Instead of inserting a QCStatements extension,

CAs MAY choose to specify a monetary limit as an attribute using the QcEuLimitValue syntax and the id-etsi-qcs-QcLimitValue OID. Note that QcEuLimitValue is
backward compatible with MonetaryLimit. Hence, it sufficient for processing components to implement the QcEuLimitValue structure and use it to process any attributes
with the id-etsi-qcs-QcLimitValue and the id-commonpki-at-monetaryLimit OIDs.
If both QcEuLimitValue and MonetaryLimit occur in the same certificate (as extension or attribute), they MUST assert the same value and currency. A certificate SHOULD
use only one form.

[5] Common PKI Profile: If an AC should contain personal identification data, they MUST be included in an AC as an attribute (not as an extension).

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 47 of 67

Table 29a: Procuration

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki-at-procuration OBJECT IDENTIFIER ::=
 {id-commonpki-at 2}

OID for extension/attribute Procuration n.a. T43

2 ProcurationSyntax ::= SEQUENCE { Attribute to indicate that the certificate holder
may sign in the name of a third person

+- +

n.a. [1]

3 country [1] EXPLICIT PrintableString(SIZE(2))
 OPTIONAL,

indicates the country whose laws apply +- ++

4 typeOfSubstitution [2] EXPLICIT DirectoryString
 (SIZE(1..128)) OPTIONAL,

type of procuration (e.g. manager, procuration,
custody)

+- ++ T6

5 signingFor [3] EXPLICIT SigningFor } #6
6 SigningFor ::= CHOICE { Identification of the represented (substituted)

person via:

7 thirdPerson GeneralName, either his/her name T8
T7

[2]

8 certRef IssuerSerial }

or a reference to his/her base certificate.
The base certificate MUST be a qualified
PKC.

 T28#14

[1] COMMON PKI PROFILE: The corresponding ProcurationSyntax contains either the name of the person who is represented (subcomponent thirdPerson) or a reference
to his/her base certificate (in the component signingFor, subcomponent certRef), furthermore the optional components country and typeSubstitution to indicate the
country whose laws apply, and respectively the type of procuration (e.g. manager, procuration, custody).

[2] COMMON PKI PROFILE: The GeneralName MUST be of type directoryName and MAY only contain:
- RFC3739 attributes, except pseudonym (countryName, commonName, surname, givenName, serialNumber, organizationName, organizationalUnitName,

stateOrProvincename, localityName, postalAddress) and
- SubjectDirectoryName attributes (title, dateOfBirth, placeOfBirth, gender, countryOfCitizenship, countryOfResidence and NameAtBirth).

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 48 of 67

Table 29b: Admission

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki-at-admission OBJECT IDENTIFIER ::=
 {id-commonpki-at 3}

OID for extension/attribute Admission n.a. T43

2 id-commonpki-at-namingAuthorities OBJECT IDENTIFIER ::=
 {id-commonpki-at 11}

 n.a. T43

3 AdmissionSyntax ::= SEQUENCE {

Attribute to indicate admissions to certain
professions

+- + n.a.

4 admissionAuthority GeneralName OPTIONAL,
5 contentsOfAdmissions SEQUENCE OF Admissions } [1]
6 Admissions ::= SEQUENCE {
7 admissionAuthority [0] EXPLICIT GeneralName OPTIONAL, T8
8 namingAuthority [1] EXPLICIT NamingAuthority OPTIONAL, #10
9 professionInfos SEQUENCE OF ProfessionInfo } #14
10 NamingAuthority ::= SEQUENCE {
11 namingAuthorityId OBJECT IDENTIFIER OPTIONAL,
12 namingAuthorityUrl IA5String OPTIONAL,
13 namingAuthorityText DirectoryString(SIZE(1..128)) OPTIONAL} T6
14 ProfessionInfo ::= SEQUENCE {
15 namingAuthority [0] EXPLICIT NamingAuthority OPTIONAL, #10
16 professionItems SEQUENCE OF DirectoryString

 (SIZE(1..128)),
 T6

17 professionOIDs SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,
18 registrationNumber PrintableString(SIZE(1..128)) OPTIONAL,
19 addProfessionInfo OCTET STRING OPTIONAL }
[1] COMMON PKI PROFILE: The relatively complex structure of AdmissionSyntax supports the following concepts and requirements:

• External institutions (e.g. professional associations, chambers, unions, administrative bodies, companies, etc.), which are responsible for granting and verifying
professional admissions, are indicated by means of the data field admissionAuthority. An admission authority is indicated by a GeneralName object. Here an
X.501 directory name (distinguished name) can be indicated in the field directoryName , a URL address can be indicated in the field uniformResourceIdentifier,
and an object identifier can be indicated in the field registeredId .

• The names of authorities which are responsible for the administration of title registers are indicated in the data field namingAuthority. The name of the authority
can be identified by an object identifier in the field namingAuthorityId , by means of a text string in the field namingAuthorityText, by means of a URL address in
the field namingAuthorityUrl, or by a combination of them. For example, the text string can contain the name of the authority, the country and the name of the
title register. The URL-option refers to a web page which contains lists with „officially“ registered professions (text and possibly OID) as well as further
information on these professions. Object identifiers for the component namingAuthorityId MAY be grouped under the OID-branch id-commonpki-at-
namingAuthorities and MAY be applied for by interested authorities.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 49 of 67

See http://www.teletrust.de/fileadmin/files/oid/oid_Antrag.pdf for an application form and http://www.teletrust.de/index.php?id=524 for an overview of
registered naming authorities.
However a naming authority is NOT REQUIRED to register under the OID id-commonpki-at-namingAuthorities in order to define profession OIDs.

• By means of the data type ProfessionInfo certain professions, specializations, disciplines, fields of activity, etc. are identified. A profession is represented by one
or more text strings, resp. profession OIDs in the fields professionItems and professionOIDs and by a registration number in the field registrationNumber. An
indication in text form MUST always be present, whereas the other indications are optional. The component addProfessionInfo MAY contain additional
application-specific information in DER-encoded form.

By means of different namingAuthority-OIDs or profession OIDs hierarchies of professions, specializations, disciplines, fields of activity, etc. can be expressed as
illustrated as a possible example in the figure below. The issuing admission authority SHOULD always be indicated (field admissionAuthority), whenever a
registration number is presented. Still, information on admissions MAY be given without indicating an admission or a naming authority by the exclusive use of the
component professionItems. In this case the certification authority is responsible for the verification of the admission information.

 id-commonpki-at-namingAuthorities

OID of the authority for
„Law, Economy, Taxes “

OID of the profession
„Lawyer “

OID of the profession
„Tax Adviser “

...

OID of the authority for
other area of application

...

This attribute is single-valued. Still, several admissions can be captured in the sequence structure of the component contentsOfAdmissions of AdmissionSyntax or in
the component professionInfos of Admissions.
The component admissionAuthority of AdmissionSyntax serves as default value for the component admissionAuthority of Admissions. Within the latter component the
default value can be overwritten, in case that another authority is responsible.
The component namingAuthority of Admissions serves as a default value for the component namingAuthority of ProfessionInfo . Within the latter component the
default value can be overwritten, in case that another naming authority needs to be recorded.

The length of the string objects is limited to 128 characters. It is RECOMMENDED to indicate a namingAuthorityURL in all issued attribute certificates. If a
namingAuthorityURL is indicated, the field professionItems of ProfessionInfo SHOULD contain only registered titles. If the field professionOIDs exists, it has to
contain the OIDs of the professions listed in professionItems in the same order. In general, the field professionInfos SHOULD contain only one entry, unless the

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 50 of 67

admissions that are to be listed are logically connected (e.g. they have been issued under the same admission number).

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 51 of 67

Table 29c: MonetaryLimit

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki-at-monetaryLimit OBJECT IDENTIFIER ::=
 {id-commonpki-at 4}

OID for extension/attribute MonetaryLimit n.a. T43

2 MonetaryLimitSyntax ::= SEQUENCE { Indicates a monetary limit within which the
certificate holder is authorized to act.
(This value DOES NOT express a limit on the
liability of the certification authority).

+- ++ n.a.

3 currency PrintableString (SIZE(3)), ISO code
4 amount INTEGER, value = amount•10exponent
5 exponent INTEGER }

Table 29d: DeclarationOfMajority

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki-at-declarationOfMajority OBJECT IDENTIFIER ::=
 {id-commonpki-at 5}

OID for extension/attrib. DeclarationOfMajority n.a. T43

2 DeclarationOfMajoritySyntax ::= CHOICE { +- ++ n.a.
3 notYoungerThen [0] IMPLICIT INTEGER,

indicates a minimu m age [1]

4 fullAgeAtCountry [1] IMPLICIT SEQUENCE { indicates the majority of the owner with respect
to the laws of a specific country

5 fullAge BOOLEAN DEAULT TRUE, majority age reached in that country
6 country PrintableString (SIZE(2)) } ISO code of that country
7 dateOfBirth [2] IMPLICIT GeneralizedTime } date of birth of the certificate owner [1]
[1] COMMON PKI PROFILE: In the field notYoungerThan any age can be specified. In the coding of dateOfBirth the format YYYYMMDD000000Z has to be applied.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 52 of 67

Table 29e: Restriction

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki-at-restriction OBJECT IDENTIFIER ::=
 {id-commonpki-at 8}

OID for extension/attrib. Restriction n.a. T43

2 RestrictionSyntax ::= DirectoryString (SIZE(1..1024)) Text indicating some other restriction regarding
the usage of this certificate.

+- ++ n.a. P1.T6

Table 29f: AdditionalInformation

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki-at-additionalInformation OBJECT IDENTIFIER ::=
 {id-commonpki-at 15}

OID for extension/attrib. AdditionalInformation n.a. T43

2 AdditionalInformationSyntax ::=
 DirectoryString (SIZE(1..2048))

Text indicating some other information (of non-
restrictive nature) regarding the usage of this
certificate.

+- ++ n.a. P1.T6a

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 53 of 67

3.2 Attribute Certificate Extensions

Table 30: An overview of attribute certificate extensions

SUPPORT REFERENCES # EXTENSION OID SEMANTICS CRITI
CAL GEN PROC RFC3281 CO . PKI

NO
TES

 X.509 BASIC EXTENSIONS

1 AuthorityKeyIdentifier {2 5 29 35} An ID identifying the public key (thus possibly several certificates)
corresponding to the signing private key of the issuing CA.

--
(RFC
n.a.)

++
(RFC
+)

+ 4.3.3 T11 [1]

2 CertificatePolicies {2 5 29 32} Indicates the policy under which the certificate has been issued and
the purposes for which it is to be used.

+-

+-

++ n.a. T14 [1]

3 CRLDistributionPoints {2 5 29 31} Identifies how CRL information to this certificate can be obtained. -
(RFC
n.a.)

+/++
dir/ind.
CRL
(RFC
+-)

+

4.3.5 T22 [1]

 RFC5280 PRIVATE EXTENSIO NS
4 AuthorityInfoAccess {id-pe 1} Access to online validation service and/or policy information of the

CA issuing this certificate.
--

+- +

4.3.4 T23 [1]

 RFC3739 QC PRIVATE EXTENSIONS
5 QCStatements {id-pe 3} A statement to indicate that the certificate is a Qualified Certificate in

accordance with a particular legal system.
-

+-

+

n.a. T25 [1]

 RFC3281 AC PRIVATE EXTENSIONS
6 AuditIdentity {id-pe 4} A server/service administrator uses this ID to track the behavior of an

AC holder, without getting his identity.
(RFC
++)

-- - 4.3.1 n.a. [2]

7 Targets {2 5 29 55} Name of a servers/services, the AC is intended for. (RFC
n.a.)

-- - 4.3.2 n.a. [2]

8 NoRevAvail {2 5 29 56} Indicates that no revocation information will be available for the AC (RFC
--)

-- - 4.3.6 n.a. [2]

[1] [RFC3281]: Not all of these extensions are part of [RFC3281]. AuthorityKeyIdentifier, CRLDistributionPoints and AuthorityInfoAccess are supported in order “to assist the
AC verifier in checking the signature of the AC.”
Common PKI Profile: Besides AuthorityKeyIdentifier, CRLDistributionPoints and AuthorityInfoAccess, the extensions CertificatePolicies and QCStatements are
supported in this profile. These extensions allow the path validation procedure (see Part 5) to handle ACs in the same way as PKCs. The same criticality and support
requirements as well as comments apply for these extensions as in PKCs. Refer to the corresponding tables !

[2] Common PKI Profile: At the moment, these RFC3281extensions are not yet part of this specification.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

CRL Format Common PKI Part 1 – Page 54 of 67

4 CRL Format

Table 31: CertificateList (CRL)

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 CertificateList ::= SEQUENCE { 5.1.1
2 tbsCertList TBSCertList, the DER-encoding of this “to be signed” part of the data structure

will be signed by the CA
 5.1.1.1 T32

3 signatureAlgorithm AlgorithmIdentifier, an identifier of the signature algorithm used by the CA to sign this
CRL

 5.1.1.2 T4

4 signatureValue BIT STRING } the signature of the CA represented as BIT STRING 5.1.1.3

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

CRL Format Common PKI Part 1 – Page 55 of 67

Table 32: TBSCertList

SUPPORT REFERENCES NO
TES

ASN.1 DEFINITION SEMANTICS

GEN PROC RFC5280 CO . PKI
1 TBSCertList ::= SEQUENCE {
2 version Version OPTIONAL, Version number of the CRL format ++ ++ 5.1.2.1 T2.#12 [1]

[8]
3 signature AlgorithmIdentifier, an identifier of the signature algorithm used by the CA to sign this

CRL.
 5.1.2.2 T4 [2]

4 issuer Name, DName of the issuer of this CRL 5.1.2.3 T5 [3]
5 thisUpdate Time, Date and time when this CRL was issued 5.1.2.4 T3 [4]
6 nextUpdate Time OPTIONAL, Date and time when the next CRL will be issued ++ ++ 5.1.2.5 T3 [4]

[5]
[8]

7 revokedCertificates SEQUENCE OF SEQUENCE { List of revoked certificates, the “useful” content of the CRL +- ++ 5.1.2.6 [6]
8 userCertificate CertificateSerialNumber, Serial number of the revoked certificate 5.1.2.6
9 revocationDate Time, Date and time at which the certificate was revoked 5.1.2.6 T3 [4]
10 crlEntryExtensions Extensions OPTIONAL A non-empty list of extensions describing the revoked cert. 5.3 T37 [7]
11 } OPTIONAL,
12 crlExtensions [0] EXPLICIT Extensions

 OPTIONAL }
A non-empty list of CRL extensions ++ ++ 5.2 T33

[1] [RFC5280]: version MUST be v2(1), if any extensions present in crlEntryExtensions or in crlExtensions. Since RFC5280 enforces the presence of extension CRLNumber,
this is always the case.
Common PKI Profile: conforming to RFC5280,only v2(1) CRLs MUST be issued.

[2] Content must be the same as signatureAlgorithm in Table 31.3.
[3] [RFC5280]: The same constraints apply as for the issuer field of key certificates. See Table 2.[4]
[4] [RFC5280]: The same constraints apply as for the validity field of key certificates. See Table 3.[1]

The revocation date SHOULD NOT precede the issue date of earlier certificates.
[5] [RFC5280]: The optional field nextUpdate MUST be included in all CRLs. It indicates the date by which the next CRL will be issued. For technical reasons (it takes some

time to create the CRL), the next CRL MAY be issued before the indicated date, but MUST NOT be issued any later. CAs should issue CRLs with a nextUpdate time equal
to or later than all previous CRLs.

[6] This optional field may be omitted, if there are no revoked certificates
[7] [RFC5280]: If a CRLcontains a critical CRL entry extension that the application cannot process, then the application MUST NOT use that CRL to determine the

status of any certificates. However, applications may ignore unrecognized non-critical CRL entry extensions.
[8] [RFC5280]: When CRLs are issued, the CRLs MUST be version 2 CRLs, include the date by which the next CRL will be issued in the nextUpdate field, include

the CRLnumber extension, and include the AuthorityKeyIdentifier extension.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

CRL Format Common PKI Part 1 – Page 56 of 67

4.1 CRL Extensions

Table 33: An overview of CRL extensions

SUPPORT REFERENCES # EXTENSION OID SEMANTICS CRITI
CAL GEN

“DIRECT”/
INDIR.CRL

PROC RFC5280 CO . PKI
NO
TES

 X.509 BASIC EXTENSIONS
1 AuthorityKeyIdentifier {2 5 29 35} An ID identifying the public key (thus possibly several certs)

corresponding to the signing private key of the issuing CA.
--
(RFC
n.a.)

++/++ + 5.2.1 T11 [1]
[2]

2 IssuerAltNames {2 5 29 18} Alternative technical names of the issuing CA:
email, DNS name, IP address, URI

-

-/+-
(RFC
n.a.)

+ 5.2.2 T16.#2 [2]

3 CRLNumber {2 5 29 20} Number of the CRL -- ++/++ ++ 5.2.3 T34
4 DeltaCRLIndicator {2 5 29 27} Indicates that the CRL is a delta-CRL, i.e. contains only entries of

the current complete CRL that are not present in a previous
complete CRL, the base CRL.

++ +-/+- ++ 5.2.4 T35

5 IssuingDistributionPoint {2 5 29 28} Indicates whether the CRL covers revocations for end entity
certificates only, for CA certificates only or for a limited set of
reason codes and whether it is an indirect CRL.

++ +-/++

+

5.2.5 T36

6 FreshestCRL {2 5 29 46} This extension (a.k.a. DeltaCRLDistributionPoint) identifies how
delta CRL information is obtained.

-- +-/+- + 5.2.6 T36a

7 AuthorityInfoAccess {id-pe 1} Access to online validation service and/or policy information of the
CA issuing this CRL.

-- +-/+- + 5.2.7 T36b

[1] Common PKI Profile: The crlSign-Flag in the KeyUsage extension MUST be set in all CA- or end-entity certificates, that correspond to CRL-signing keys. Issuers of
indirect CRLs typically posses an end-entity certificate.

[2] Common PKI Profile: As readily described in T22.[2], there are two types of CRLs:
1) “direct” CRL: the CA that issued the certificate issues the corresponding CRLs too. This situation can be recognized by relying software if the following conditions

apply:
a. if the CRLDistributionPoints extension is missing from the certificate or
b. it is present, but the cRLIssuer field is missing.

2) indirect CRL: the CRLs are signed with a key different from the key of the CA. This situation can be recognized by relying software if the CRLDistributionPoints
extension is present in the certificate and the cRLIssuer field holds a DName (different from the subject of the CA certificate). Additionally, indirect CRLs MUST
include an IssuingDistributionPoint extension with indirectCRL flag set to true.

So that relying software can locate the certificate of the issuer of an indirect CRL, AuthorityKeyIdentifier MUST and IssuerAltNames MAY be included in indirect CRLs.
The IssuerAltNames extension MAY contain the LDAP-URL of the node that holds the CRL-signer’s certificate.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

CRL Format Common PKI Part 1 – Page 57 of 67

Table 34: CRLNumber

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 } OID to be used in conjunction with extension CRLNumber 5.2.3
2 CRLNumber ::= INTEGER (0..MAX) Syntax of extension CRLNumber 5.2.3 [1]
[1] [RFC5280]: CRLs MUST be assigned numbers of a monotonically increasing sequence. This extension allows easily determining whether a particular CRL supersedes

another one.
[Common PKI PROFILE] : [RFC5280] does not constrain the value or the length of this field. Similarly to CertificateSerialNumber, a maximal length of 20 octets will be
defined here, i.e. 0 ≤ CRLNumber < 2159 (MSB=0 indicates the positive sign!). Processing components MUST be able to work with such long numbers.

Table 35: DeltaCRLIndicator

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 id-ce-deltaCRLIndicator OBJECT IDENTIFIER ::=
 { id-ce 27 }

Indicates that the CRL is a delta-CRL, i.e. contains only entries of
the current complete CRL that are not present in a previous
complete CRL, the base CRL. Using a complete CRL and all
subsequent delta-CRLs, the relying component is able to
continuously maintain a local instance of subsequent complete
CRLs.

 5.2.4

2 BaseCRLNumber ::= CRLNumber Syntax of extension DeltaCRLIndicator 5.2.4 T34.#2 [1]
[1] [RFC5280]: The CRL issuer MAY also generate delta CRLs. A delta CRL only lists those certificates, within its scope, whose revocation status has changed since the

issuance of a referenced complete CRL. The referenced complete CRL is referred to as a base CRL. The scope of a delta CRL MUST be the same as the base CRL that it
references. Conforming applications are not required to support processing of delta CRLs .

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

CRL Format Common PKI Part 1 – Page 58 of 67

Table 36: IssuingDistributionPoint

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 id-ce-issuingDistributionPoint OBJECT IDENTIFIER ::=
 { id-ce 28 }

 5.2.5

2 IssuingDistributionPoint ::= SEQUENCE { Syntax of extension IssuingDistributionPoint. Indicates
whether the CRL covers revocations for end entity
certificates only, for CA certificates only or for a limited
set of reason codes.

 5.2.5 [1]

 distributionPoint [0] EXPLICIT DistributionPointName
 OPTIONAL,

If the CRL is stored in an X.500 directory, it will be
stored under the entry indicated by this field and which
may be different from the directory entry of CA signing
the CRL.

 T22.#2 [2]
[3]

 onlyContainsUserCerts [1] IMPLICIT BOOLEAN DEFAULT FALSE, Set if CRL contains only end entity certificates
 onlyContainsCACerts [2] IMPLICIT BOOLEAN DEFAULT FALSE, Set if CRL contains only end CA certificates
 onlySomeReasons [3] IMPLICIT ReasonFlags OPTIONAL, CAs may use this flag to partition their CRL according to

the reason of revocation, e.g. on the basis of compromise
or routine revocation.

 T22..#9

 indirectCRL [4] IMPLICIT BOOLEAN DEFAULT FALSE, Indicates that the CRL is an indirect one, i.e. the CRL
issuer is not the same entity as the issuer of (some of) the
certificates listed in the CRL.

 onlyContainsAttributeCerts
 [5] IMPLICIT BOOLEAN DEFAULT FALSE }

Indicates that the CRL only contains revoked attribute
certificates.

[1] [RFC5280]: It is the decision of the CA whether it issues delta-CRLs. When a CA issues a delta-CRL, it MUST also issue a corresponding complete CRL (the current
complete CRL). The delta-CRL and the complete CRL MUST have the same CRLNumber.

[2] CHOICE objects are always EXPLICITly tagged, independent of the default tagging modus.
[3] [RFC5280]: If an URL is given, it MUST point to the most current CRL issued by this CA. The URL schemes ftp, http [RFC1738] [RFC3986], mailto [RFC2368] and ldap

[RFC4516] are defined for this purpose. The URI MUST be an absolute, not relative, pathname and MUST specify the host.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

CRL Format Common PKI Part 1 – Page 59 of 67

Table 36a: FreshestCRL

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN

PROC RFC5280 CO . PKI
NO
TES

1 FreshestCRL ::= SEQUENCE SIZE (1..MAX) OF
 CRLDistributionPoint

This extension (a.k.a. DeltaCRLDistributionPoint) identifies
how delta CRL information is obtained.

+- + 5.2.6 T22#2 [1]

[1] [RFC5280]: This extension MUST NOT appear in delta CRLs.
The same syntax is used for this extension and the cRLDistributionPoints extension. The same conventions apply to both extensions.
Each distribution point name provides the location at which a delta CRL for this complete CRL can be found.

Table 36b: AuthorityInfoAccess

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 AuthorityInfoAccessSyntax ::= SEQUENCE SIZE (1..MAX) OF
 AccessDescription

Indicates how to access information and services for the
subject of the certificate.

+- + 5.2.7 T23#4

2 id-ad-caIssuers OBEJCT IDENTIFIER ::= {id-ad 2} An OID for the case, when the referenced information
lists CAs that have issued certificates for the issuer of
this CRL.

++ + 4.2.2.1 T23#8 [1]

[1] [RFC5280]: When present in a CRL, this extension MUST include at least one AccessDescription specifying id-ad-caIssuers as the accessMethod.
The id-ad-caIssuers OID is used when the information available lists certificates that can be used to verify the signature on the CRL
Access method types other than id-ad-caIssuers MUST NOT be included.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

CRL Format Common PKI Part 1 – Page 60 of 67

4.2 CRL Entry Extensions

Table 37: An overview of CRL entry extensions

SUPPORT REFERENCES # EXTENSION OID SEMANTICS CRITI
CAL GEN

“DIRECT”/
INDIR.CRL

PROC RFC5280 CO . PKI
NO
TES

 BASIC EXTENSIONS
1 ReasonCode {2 5 29 21} Reason for the certificate revocation -- +-

+-

5.3.1 T38 [1]

2 HoldInstructionCode {2 5 29 23} A registered instruction identifier indicating the action to be taken
when the certificate that has been placed on hold.

-- --

-

[RFC
3280]
5.3.2

T39 [3]

3 InvalidityDate {2 5 29 24} Indicates the date on which it is known or suspected that the
private key became compromised or the certificate otherwise
became invalid.

-- +-

+-

5.3.2 T40 [1]

4 CertificateIssuer {2 5 29 29} Used in indirect CRLs to indicate the issuer of the revoked
certificate, if it is different from the issuer of the CRL.

++ -/++

++

5.3.3 T41 [2]

[1] [RFC5280]: Conforming CA’s SHOULD include these extensions if such information is available.
[2] [RFC5280]: Indirect CRLs MUST include the CertificateIssuer extension in CRL entries. “Direct” CRLs SHOULD NOT include this extension.
[3] The HoldInstructionCode extension is no longer supported in [RFC5280].

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

CRL Format Common PKI Part 1 – Page 61 of 67

Table 38: ReasonCode

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 id-ce-cRLReasons OBJECT IDENTIFIER ::= { id-ce 21 } OID of the ReasonCode extension 5.3.1
2 CRLReason ::= ENUMERATED {

 unspecified (0),
 keyCompromise (1),
 cACompromise (2),
 affiliationChanged (3),
 superseded (4),
 cessationOfOperation (5),
 certificateHold (6),
 removeFromCRL (8),
 privilegeWithdrawn (9),
 aACompromise (10) }

Reason for the certificate revocation 5.3.1 [1]

[1] [RFC5280]: CAs are strongly encouraged to include meaningful reason codes. However, if no such information is available, the ReasonCode extension SHOULD be
absent, instead of giving the code unspecified(0).
Common PKI Profile: If during the revocation of a certificate a key compromise cannot be excluded with sufficient probability, the CA SHALL set the reason code to
keyCompromise (resp.cACompromise or aACompromise), so that the reason code unspecified or an absent reason code can be treated as “unknown, but key compromise
can be excluded with sufficient probability”.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

CRL Format Common PKI Part 1 – Page 62 of 67

Table 39: HoldInstructionCode

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC3280 CO . PKI

NO
TES

1 id-ce-holdInstructionCode OBJECT IDENTIFIER ::= {id-ce 23} OID of the HoldInstructionCode extension -- - 5.3.2 [2]
2 HoldInstruction ::= OBJECT IDDENTIFIER Syntax of the HoldInstructionCode

extension
 5.3.2

3 holdInstruction OBJECT IDENTIFIER ::= {1 2 840 10040 2 }
4 id-holdInstruction-none OBJECT IDENTIFIER ::= {holdInstruction 1} No action specified. -- - [1]
5 id-holdinstruction-callissuer OBJECT IDENTIFIER ::= {holdInstruction 2} Conforming applications MUST call the

issuer or reject the certificate.
-- -

6 id-holdinstruction-reject OBJECT IDENTIFIER ::= {holdInstruction 3} Conforming applications MUST reject the
certificate.

-- -

[1] [RFC3280]: The extension MUST be absent from the CRL rather than indicating the id-holdInstruction-none code, which is semantically the same.
[2] The HoldInstructionCode extension is no longer specified in [RFC5280].

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

CRL Format Common PKI Part 1 – Page 63 of 67

Table 40: InvalidityDate

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC5280 CO . PKI

NO
TES

1 id-ce-invalidityDate OBJECT IDENTIFIER ::= { id-ce 24 } OID of the InvalidityDate extension 5.3.2 [2]
2 InvalidityDate ::= GeneralizedTime Syntax of the InvalidityDate extension 5.3.2 [1]
[1] [RFC5280]: The same constraints apply as for the validity field of PKCs. See Table 3.[1]
[2] [RFC5280]: This extension provides the date on which it is known or suspected that the private key was compromised or that the certificate otherwise became invalid.

This date may be earlier than the revocation date in the CRL entry, which is the date at which the CA processed the revocation.

Table 41: CertificateIssuer

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN
“DIRECT”/
INDIR.CRL

PROC RFC5280 CO . PKI
NO
TES

1 id-ce-certificateIssuer OBJECT IDENTIFIER ::= { id-ce 29 } OID of the CertificateIssuer extension 5.3.3
2 CertificateIssuer ::= GeneralNames Syntax of the CertificateIssuer

extension
 5.3.3 T8 [1]

[1] [RFC5280]: If this extension is not present on the first entry of an indirect CRL, the certificate issuer defaults to the CRL issuer. If this extension is not present in a
subsequent entry, the certificate issuer defaults to the issuer of the preceding entry. Practically, an indirect CRL SHOULD be sorted according to the issuers of the entries.
Common PKI Profile: the GeneralNames value MUST contain exactly one directoryName item with the subject DName in the certificate of the issuing CA.

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Cross Certificates Common PKI Part 1 – Page 64 of 67

5 Cross Certificates

A CA may issue a cross certificate for another CA to allow users of certificates subordinate to the other CA to verify certificates subordinate to the
issuing CA. Accordingly, the cross certificate will be stored in the directory entry of the other CA. The directory attribute that stores one or more
cross certificates is called crossCertificatePair and uses the syntax CertificatePair specified in Table 42 below. Note that directory attribute
crossCertificatePair may have several values, e.g. several certificate pairs.

Table 42: Cross Certificate Pair

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC X.509:05 CO . PKI

NO
TES

1 CertificatePair ::= SEQUENCE { +- ++ Chap.
11.2.3

 [1]

2 issuedToThisCA [0] EXPLICIT Certificate OPTIONAL, ++ ++ T1
3 issuedByThisCA [1] EXPLICIT Certificate OPTIONAL } +- + T1
[1] [X.509:2005]: The issuedToThisCA elements of the crossCertificatePair attribute of a CA's directory entry SHALL store all, except self-issued certificates issued to this

CA. Optionally, the issuedByThisCA elements of the crossCertificatePair attribute, of a CA's directory entry MAY contain a subset of certificates issued by this CA to
other CAs.
When both the issuedToThisCA and the issuedByThisCA elements are present in a single attribute value, issuer name in one certificate shall match the subject name in the
other and vice versa, and the subject public key in one certificate shall be capable of verifying the digital signature on the other certificate and vice versa.
When a issuedByThisCA element is present, the issuedToThisCA element value and the issuedByThisCA element value need not be stored in the same attribute value; in
other words, they can be stored in either a single attribute value or two attribute values.
The term forward was used in previous editions for issuedToThisCA and the term reverse was used in previous editions for issuedByThisCA.
In the case of V3 certificates, none of the above CA certificates shall include a BasicConstraints extension with the cA value set to FALSE.
Common PKI Profile: The issuer and respectively subject DNames MUST be identical, in order to allow client components to use simple matching rules in chain building
(exact match).

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

Attribute Certificate Format Common PKI Part 1 – Page 65 of 67

6 Common PKI Object Identifiers

The following table lists ASN.1 object identifiers introduced in the Common PKI Specification. The id-commonpki branch of the OID tree was
previously known under the name id-isismtt and before that under the name id-sigi, the name but not the meaning has been changed in this version.

Table 43: Common PKI Object Identifiers

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki OBJECT IDENTIFIER ::= {1 3 36 8 } +- +- n.a.
2 id-commonpki-cp OBJECT IDENTIFIER ::= {id-commonpki 1} Branch for certificate policies +- +- n.a.
3 id-commonpki-at OBJECT IDENTIFIER ::= {id-commonpki 3} Branch for attributes and

extensions
+- +- n.a.

4 id-commonpki-at-certHash OBJECT IDENTIFIER ::= {id-commonpki-at 13} OID of an OCSP extension +- +- n.a. P4.T15
5 id-commonpki-at-nameAtBirth OBJECT IDENTIFIER ::= {id-commonpki-at 14} OID of a DName attribute +- +- n.a. P1.T7
6 id-commonpki-at-procuration OBJECT IDENTIFIER ::= {id-commonpki-at 2} +- + n.a. P1.T29a

7 id-commonpki-at-admission OBJECT IDENTIFIER ::= {id-commonpki-at 3} +- + n.a. P1.T29b

8 id-commonpki-at-monetaryLimit OBJECT IDENTIFIER ::= {id-commonpki-at 4} +- + n.a. P1.T29c

9 id-commonpki-at-declarationOfMajority OBJECT IDENTIFIER ::= {id-commonpki-at 5} +- + n.a. P1.T29d

10 id-commonpki-at-restriction OBJECT IDENTIFIER ::= {id-commonpki-at 8} +- + n.a. P1.T29e

11 id-commonpki-at-namingAuthorities OBJECT IDENTIFIER ::= {id-commonpki-at 11} Branch for registering naming
authorities of Admission attributes

+- +- n.a. P1.T29b [1]
[2]

12 id-commonpki-at-additionalInformation OBJECT IDENTIFIER ::= {id-commonpki-at 15} +- + n.a. P1.T29f

[1] See http://www.teletrust.de/fileadmin/files/oid/oid_Antrag.pdf for an application form and http://www.teletrust.de/index.php?id=524 for an overview of registered naming
authorities.

[2] At the time of this writing, profession OIDs for the German health care system are defined in the OID sub tree under (1 2 276 0 76 4), see
http://www.dimdi.de/dynamic/de/ehealth/oid/verzeichnis.html .

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

References Common PKI Part 1 – Page 66 of 67

References

 [ECDIR] Directive 1999/93/EC of the European Parliament and of the Council of
13 December 1999 on a Community Framework for Electronic
Signatures

[ETSI-CPN] ETSI TS 102 280 v1.1.1 (2004-03) : X.509 V.3 Certificate Profile for
Certificates Issued to Natural Persons

[ETSI-QC] ETSI TS 101 862 v1.3.3 (2006-01): Qualified Certificate profile
[ETSI-TSP] ETSI TS 101 861 v1.3.1 (2006-01): Time Stamping Profile

[ISIS] Industrial Signature Interoperability Specification ISIS, Version 1.2,
December 1999, T7 i.Gr., www.t7- isis.de

[MTTv2] MailTrusT Version 2, March 1999, TeleTrust Deutschland e.V.,
www.teletrust.de

[NFC] Davis, M. and M. Duerst, "Unicode Standard Annex #15: Unicode
Normalization Forms", October 2006,
http://www.unicode.org/reports/tr15/

[RFC1034] Domain Names – Concepts and facilities, November 1987
[RFC1630] Universal Resource Identifiers in WWW, June 1994
[RFC1738] Uniform Resource Locators (URL), December 1994
[RFC2247] Using Domains in LDAP/X.500 Distinguished Names, January 1998
[RFC2368] The mailto URL scheme, July 1998
[RFC2460] Internet Protocol, Version 6 (IPv6) Specification, December 1998

[RFC2560] X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol -OCSP, June 1999

[RFC2822] Internet Message Format, April 2001

[RFC3039] Internet X.509 Public Key Infrastructure Qualified Certificates Profile,
January 2001

[RFC3161] Internet X.509 Public Key Infrastructure - Time Stamp Protocol (TSP),
August 2001

[RFC3279] Algorithms and Identifiers for the Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,
April 2002

[RFC3280] Internet X.509 Public Key Infrastructure – Certificate and Certificate
Revocation List (CRL) Profile, April 2002

[RFC3281] An Internet Attribute Certificate Profile for Authorization, April 2002
[RFC3490] Internationalizing Domain Names in Applications (IDNA), March 2003
[RFC3629] UTF-8, a transformation format of ISO 10646, November 2003

[RFC3739] Internet X.509 Public Key Infrastructure: Qualified Certificates Profile,
March 2004

[RFC3850] Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 –
Certificate Handling, July 2004

[RFC3986] Uniform Resource Identifier (URI): Generic Syntax, January 2005

Common PKI Part 1: Certificate And CRL Profiles Version 2.0

References Common PKI Part 1 – Page 67 of 67

[RFC4510] Lightweight Directory Access Protocol (LDAP): Technical Specification
Road Map, June 2006

[RFC4516] Lightweight Directory Access Protocol (LDAP): Uniform Resource
Locator, June 2006

[RFC4519] Lightweight Directory Access Protocol (LDAP): Schema for User
Applications, June 2006

[RFC4523] Lightweight Directory Access Protocol (LDAP) Schema Definitions for
X.509 Certificates, June 2006

[RFC5246] The Transport Layer Security (TLS) Protocol Version 1.2, August 2008

[RFC5280] Internet X.509 Public Key Infrastructure – Certificate and Certificate
Revocation List (CRL) Profile, May 2008

[RFC791] Internet Protocol – DARPA Internet Program Protocol Specification
(v4), September 1981

[X.509:1997] ITU-T X.509: Information Technology - Open Systems Interconnection
– The Directory: Authentication Framework, 1997

[X.509:2005] ITU-T X.509: Information technology – Open Systems Interconnection
– The Directory: Public-key and attribute certificate frameworks, 2005

COMMON PKI SPECIFICATIONS
FOR INTEROPERABLE APPLICATIONS

FROM T7 & TELETRUST

SPECIFICATION

PART 2

PKI MANAGEMENT

VERSION 2.0 – 20 JANUARY 2009

Common PKI Part 2: PKI Management Version 2.0

Contact Information Common PKI Part 2 – Page 2 of 14

Contact Information

The up-to-date version of the Common PKI specification can be downloaded from
www.common-pki.org or from www.common-pki.de

Please send comments and questions to common-pki@common-pki.org.

Editors of Common PKI specifications:

Hans-Joachim Bickenbach

Jürgen Brauckmann

Alfred Giessler

Tamás Horváth

Hans-Joachim Knobloch

© T7 e.V. and TeleTrusT e.V., 2002-2009

Common PKI Part 2: PKI Management Version 2.0

Document History Common PKI Part 2 – Page 3 of 14

Document History

VERSION DATE CHANGES

1.0.1
June 26th
2002

Originally, it was planned to use CMP for PKI management. However, the
Board has taken the decision to withdraw the prepared draft version for PKI
management based on CMP and to follow an alternative approach based on
CMC.
First published version based on CMC

1.0.2
July 19th
2002

Editorial and stylistic changes, and removal of bugs

1.0.2
August 11th
2003

Incorporated all changes from Corrigenda version 1.2

1.1
March 16th
2004

Several editorial changes.

1.1
13/10/2008

Incorporated all changes from Corrigenda to ISIS-MTT 1.1

2.0
20/Jan/2009

Name change from ISIS-MTT to Common PKI.
Adapted to new versions of the base standards:

- RFC 2986
- RFC 3851
- RFC 3852
- RFC 4211
- RFC 5272
- RFC 5273
- RFC 5274

Various corrections and clarifications.

Common PKI Part 2: PKI Management Version 2.0

Table of Contents Common PKI Part 2 – Page 4 of 14

Table of Contents

1 Preface... 5

2 Simple Enrollment Protocol.. 6

2.1 Protocol Elements ..6

2.1.1 PKCS#10 Certification Request Data Object ..6
2.1.2 PKCS#7 Certification Response Data Object ..6

2.2 PKI Messages..11

2.2.1 PKCS#10 Messages ...11
2.2.2 PKCS#7 Messages ...11

2.3 Transport ..11

2.3.1 Transport Mechanisms ...11
2.3.2 Simple Enrollment Requests ..11
2.3.3 Simple Enrollment Responses ...11

Annexes... 12

Annex A: ASN.1 Definitions ...12

Annex B: Abbreviations ..13

References... 14

Common PKI Part 2: PKI Management Version 2.0

Preface Common PKI Part 2 – Page 5 of 14

1 Preface

This part of the Common PKI specification addresses online communication between PKI
components. It defines a profile for Common PKI components that is mainly based on the
Internet document “Certificate Management Messages over CMS (CMC)” [RFC5272],
[RFC5273] and [RFC5274], and on the following standards:
• “Cryptographic Message Syntax” [RFC3852],

• “Internet X.509 Certificate Request Message Format” [RFC 4211],

• “PKCS#10: Certification Request Syntax” [RFC2314]1,

• “PKCS#7: Cryptographic Message Syntax” [RFC2315], and

• “S/MIME Version 3.1 Message Specification” [RFC3851].

CMC defines two variants of PKI management protocols. These are called:
• simple enrollment protocol, and

• full enrollment protocol.

The current version of this part of the Common PKI specification does only consider
conformance requirements for the simple enrollment protocol that MUST be supported by
compliant Common PKI end entities (EEs) and certification authorities (CAs).
Items of the referenced standards that are not explicitly mentioned in this specification
SHALL be treated in the same way as specified in the referenced base standards.

Conformance requirements that Common PKI compliant components MUST satisfy, are
specified in the following chapter.

1 Although [RFC2314] was obsoleted by [RFC2986], CMC [RFC5272] still references the
older [RFC2314].

Common PKI Part 2: PKI Management Version 2.0

Simple Enrollment Protocol Common PKI Part 2 – Page 6 of 14

2 Simple Enrollment Protocol

The simple enrollment protocol is composed of a simple enrollment request sent from the EE
to the CA, and a simple enrollment response returned from the CA to the EE.
The related data objects that are exchanged are a PKCS#10 [RFC2314] certification request
data object, and a PKCS#7 [RFC2315] certification response (degenerated signedData CMS
[RFC3852]) data object.

2.1 Protocol Elements

2.1.1 PKCS#10 Certification Request Data Object

The type for the PKCS#10 certification request is defined by the ASN.1 type
CertificationRequest, which is a sequence of the fields, listed in Table 1.

2.1.2 PKCS#7 Certification Response Data Object

The PKCS#7 certification response is a CMS data object, whose general syntax is defined by
the ASN.1 type ContentInfo with the content type signed-data, and whose encapContent and
signerInfos fields MUST be absent. The field certificates SHALL contain all certificates of
the certification path.
The type for signed-data is defined by the ASN.1 type SignedData, which is a sequence of the
fields listed in Table 2.

Common PKI Part 2: PKI Management Version 2.0

Simple Enrollment Protocol Common PKI Part 2 – Page 7 of 14

Table 1: Fields of CertificationRequest

FIELDS REFERENCES COMMON PKI SUPPORT

NAME SEMANTICS DOCUMENT CHAPTER STATUS TABLE GEN PROC VALUES

NOTES

1 certificationRequestI
nfo

DER encoded certification
request information to be
signed

RFC 2314
RFC 5272

6.2
3.3.1

++ ++EE ++CA

1.1 version Version number RFC 2314 6.1 ++ ++EE ++CA v1(0)

1.2 subject DName of EE RFC 2314 6.1 ++ ++EE ++CA . [1]

1.3 subjectPublicKeyInfo Information about the public
key being certified

RFC 2314 6.1 ++ ++EE ++CA [2]

1.4 attributes Set of attributes providing
additional information about
the subject of the certificate

RFC 2314
RFC 5272

6.1
3.3.1

+- +-EE ++CA [5]

1.4
.1

ExtensionReq Attribute that allows to
incorporate one or more
standard X.509v3 extensions
within the PKCS#10 request

RFC 5272 3.3.1 +- +-EE ++CA OID: 1.2.840.113549.1.9.14 [3]

2 signatureAlgorithm Identifier of the signature
algorithm used by the EE to
sign this request

RFC 2314 6.2 ++ ++EE ++CA [4]

3 signature Signature of the EE calculated
over certificationRequestInfo,
and represented as BIT
STRING

RFC 2314 6.2 ++ ++EE ++CA

Common PKI Part 2: PKI Management Version 2.0

Simple Enrollment Protocol Common PKI Part 2 – Page 8 of 14

[1] For permitted distinguished names in subject refer to P1.T2.#7 (Certificate and CRL Profiles) of this Common PKI specification.

 [RFC5272]: This field MAY contain the value NULL, but MUST be present.

 Common PKI Profile: This field MUST be present with a valid NON-NULL value. CAs that receive a CertificationRequest with a NULL subject name SHALL
reject the request, and no response MAY be returned.

[2] For further requirements concerning subjectPublicKeyInfo refer to P1.T2.#14 (Certificate and CRL Profiles) of this Common PKI specification.

[3] The OID id-ExtensionReq identifies this attribute: For permitted extension in the ExtensionReq attribute refer to P1.T10 (Certificate and CRL Profiles) of this Common
PKI specification.

[4] For permitted algorithm identifiers refer to Part 6 (Cryptographic Algorithms) of this Common PKI specification.
[5] According to the syntax defined in [RFC2314] and [RFC5272], the generating application MUST encode an empty SET element, if no attributes are included in the

request.
 Common PKI Profile: The processing application SHOULD be prepared that the whole attributes element might be omitted by faulty generating applications if no

attributes are included in the request.

Common PKI Part 2: PKI Management Version 2.0

Simple Enrollment Protocol Common PKI Part 2 – Page 9 of 14

Table 2: Fields of ContentInfo for Certification Responses

FIELDS REFERENCES COMMON PKI SUPPORT

NAME SEMANTICS DOCUMENT CHAPTER STATUS TABLE GEN PROC VALUES

NOTES

1 contentType Indication of the type of content RFC 3852
RFC 2315

3
7

++ ++CA ++EE OID: 1.2.840.113549.1.7.2 [1]

2 content Content of signed-data RFC 3852
RFC 2315

5.1
9.1

++ ++CA ++EE

2.1 version Version number of CMS syntax RFC 3852
RFC 2315

5.1
9.1

++ ++CA ++EE 1

3

[2]

2.2 digestAlgorithms Collection (including zero) of
message digest algorithm
identifiers

RFC 3852
RFC 2315

5.1
9.1

++ ++CA ++EE [3]

2.3 encapContentInfo
contentInfo

Data to be protected RFC 3852
RFC 2315

RFC 5272

5.2
9.1

4.3

--

--CA

---EE

 [4]

2.4 certificates Collection of certificates RFC 3852
RFC 2315

5.1
9.1

-+ +-CA +-EE [5]

2.5 crls Collection of CRLs RFC 3852
RFC 2315

5.1
9.1

-+ -+CA -+EE

2.6 signerInfos Collection of per-signer
information

RFC 3852
RFC 2315

RFC 5272

5.1
9.1

4.3

--

--CA

--EE

 [4]

Common PKI Part 2: PKI Management Version 2.0

Simple Enrollment Protocol Common PKI Part 2 – Page 10 of 14

[1] The OID id-signedData identifies signed-data.
[2] Compliant components SHALL always use the value 1, since non- interpreted binary data shall be protected.
[3] For permitted hash algorithm identifiers refer to P6.S2.1 (Cryptographic Algorithms) of this Common PKI specification.
[4] This field MUST be absent.
[5] Compliant components SHOULD include all certificates of the certification path(s) of the signer(s) required by the recipient.

Common PKI Part 2: PKI Management Version 2.0

Simple Enrollment Protocol Common PKI Part 2 – Page 11 of 14

2.2 PKI Messages

2.2.1 PKCS#10 Messages

Compliant EE components MUST support the generation of plain PKCS#10 messages, to be
sent to the related CAs.
Compliant CA components MUST support the processing of plain PKCS#10 messages
received from EEs.

2.2.2 PKCS#7 Messages

Compliant CA components MUST support the generation of PKCS#7 messages, to be sent to
the related EEs.
Compliant EE components MUST support the processing of PKCS#7 messages received from
CAs.

2.3 Transport

2.3.1 Transport Mechanisms

Compliant components MAY implement any of the transport mechanisms defined in
[RFC5273].

2.3.2 Simple Enrollment Requests

Compliant EE components MUST support the MIME message type application/pkcs10 for
transporting the PKCS#10 certification request objects to the related CAs. The parameter
filename with the file extension “.p10” MUST be included either in the Content-Type, or in
the Content-Disposition MIME header line.
Compliant CA components MUST support the processing of MIME messages of the type
application/pkcs10, received from EEs.

2.3.3 Simple Enrollment Responses

Compliant CA components MUST support the message type application/pkcs7-mime
together with the smime-type parameter set to the value certs-only for transporting
certificates in certification responses.
The related CMS object to be inserted into the resulting application/pkcs7-mime MIME entity
MUST be of the CMS content type signed-data (see Table 2) whose encapContent and
signerInfos fields MUST be absent. The field certificates MUST contain all certificates of the
certification path. The parameter filename with the file extension “.p7c” SHALL be included
either in the Content-Type, or in the Content-Disposition MIME header line.
Compliant EE components MUST support the processing of certs-only MIME messages,
received from EEs.

Common PKI Part 2: PKI Management Version 2.0

Annexes Common PKI Part 2 – Page 12 of 14

Annexes

Annex A: ASN.1 Definitions

This annex contains a list of ASN.1 definitions in alphabetic order that have been used in this
part of the Common PKI specification.

Attribute ::= SEQUENCE {
 attrType OBJECT IDENTIFIER,
 attrValues SET OF AttributeValue }
Attributes ::= SET OF Attribute
AttributeValue :: =ANY
CertificateChoices ::= CHOICE {
 certificate Certificate,
 extendedCertificate [0] IMPLICIT ExtendedCertificate,
 v1AttrCert [1] IMPLICIT AttributeCertificateV1,
 v2AttrCert [2] IMPLICIT AttributeCertificateV2,
 other [3] IMPLICIT OtherCertificateFormat }
CertificateRevocationLists ::= SET OF CertificateList
CertificateSet ::= SET OF CertificateChoices
CertificationRequest ::= SEQUENCE {
 certificationRequestInfo CertificationRequestInfo,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature Signature}
CertificationRequestInfo ::= SEQUENCE {
 version Version,
 subject Name,
 subjectPublicKeyInfo SubjectPublicKeyInfo,
 attributes [0] IMPLICIT Attributes}
CMSVersion ::= INTEGER {v0(0), v1(1), v2(2), v3(3), v4(4)}
ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content [0] EXPLICIT ANY DEFINED BY contentType }
ContentType ::= OBJECT IDENTIFIER
DigestAlgorithmIdentifier ::= SET OF AlgorithmIdentifier

DigestAlgorithmIdentifiers::= SET OF DigestAlgorithmIdentifier
EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }
id-ExtensionReq OBJECT IDENTIFIER ::=
 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 14}
id-signedData OBJECT IDENTIFIER ::=
 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }
Signature ::= BIT STRING
SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

Common PKI Part 2: PKI Management Version 2.0

Annexes Common PKI Part 2 – Page 13 of 14

SignatureValue ::= OCTET STRING
SignedData ::= SEQUENCE {
 version CMSVersion,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
 signerInfos SignerInfos }
Version ::= INTEGER

Annex B: Abbreviations

ASN.1 abstract syntax notation one
CA certification authority
CMC certificate management messages over CMS
CMS cryptographic message syntax
CRL certificate revocation list
DER distinguished encoding rules
EE end entity
ISIS industrial signature interoperability specification
MIME multipurpose internet mail extension
MTT MailTrusT
PKI public key infrastructure
S/MIME Secure MIME

Common PKI Part 2: PKI Management Version 2.0

References Common PKI Part 2 – Page 14 of 14

References

[RFC2314] B. Kaliski: PKCS#10: Certification Request Syntax; October 1997
[RFC2315] B. Kaliski: PKCS#7: Cryptographic Message Syntax; October 1997

[RFC2986] PKCS #10: Certification Request Syntax Specification Version 1.7,
November 2000

[RFC3851] Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1
Message Specification, July 2004

[RFC3852] Cryptographic Message Syntax (CMS), July 2004

[RFC4211] Internet X.509 Public Key Infrastructure Certificate Request Message
Format (CRMF), September 2005

[RFC5272] Certificate Management over CMS (CMC), June 2008

[RFC5273] Certificate Management over CMS (CMC): Transport Protocols, June
2008

[RFC5274] Certificate Management over CMS (CMC): Compliance Requirements,
June 2008

COMMON PKI SPECIFICATIONS
FOR INTEROPERABLE APPLICATIONS

FROM T7 & TELETRUST

 SPECIFICATION

PART 3

CMS BASED MESSAGE FORMATS

VERSION 2.0 – 20 JANUARY 2009

Common PKI Part 3: CMS based Message Formats Version 2.0

Contact Information Common PKI Part 3 – Page 2 of 28

Contact Information

The up-to-date version of the Common PKI specification can be downloaded from
www.common-pki.org or from www.common-pki.de
Please send comments and questions to common-pki@common-pki.org.

Editors of Common PKI specifications:

Hans-Joachim Bickenbach

Jürgen Brauckmann

Alfred Giessler

Tamás Horváth

Hans-Joachim Knobloch

© T7 e.V. and TeleTrusT e.V., 2002-2009

Common PKI Part 3: CMS based Message Formats Version 2.0

Document History Common PKI Part 3 – Page 3 of 28

Document History

VERSION DATE CHANGES

1.0.1
November
15th 2001

First published version

1.0.2
July 19th 2002

Editorial and stylistic changes, and removal of bugs

1.0.2
August 11th
2003

Incorporated all changes from Corrigenda version 1.2

1.1
March 16th
2004

Several editorial changes. The most relevant changes affecting technical aspects are:

1) OPTIONAL use of the older (experimental) MIME message types is permitted.

2) SigningTime MUST be encoded as UTCTime until 2049.
3) Unsigned attributes have been added.
4) RFC 3369 has been taken into account.

1.1
13/10/2008

Incorporated all changes from Corrigenda to ISIS-MTT 1.1

2.0
20/Jan/2009

Name change from ISIS-MTT to Common PKI.
Renamed to “CMS based Message Formats”-
Adapted to new versions of the base standards:

- RFC 3850
- RFC 3851
- RFC 3852
- RFC 5035
- ETSI TS 101 733 v1.7.4

Various corrections and clarifications.

Common PKI Part 3: CMS based Message Formats Version 2.0

Table of Contents Common PKI Part 3 – Page 4 of 28

Table of Contents

1 Preface... 5

2 Message Types Based on S/MIME .. 6

2.1 S/MIME Message Types..6

2.1.1 Message Type for Enveloped Data ..7
2.1.2 Message Type for Signed Data ..7
2.1.3 Message Type for Certificates-Only Messages ...8
2.1.4 Message Type for Signed Data With Multipart Encoding.........................8
2.1.5 Message Type for Compressed-Only Messages ..8

2.2 S/MIME Message Transformations ...9

3 Data Structures in S/MIME Messages .. 10

3.1 Summary of Conformance Requirements ...10

3.1 General CMS Syntax ...11

3.2 Signed-data Content Type ...12

3.3 Enveloped-data Content Type ..17

4 File Signature and Encryption .. 21

4.1 File Signature ..21

4.2 File Encryption...22

Annex A: ASN.1 Definitions ... 23

References... 28

Common PKI Part 3: CMS based Message Formats Version 2.0

Preface Common PKI Part 3 – Page 5 of 28

1 Preface

This part of the Common PKI specification addresses message formats to be used during the
exchange of data between PKI components. It defines a profile for Common PKI message
formats that is mainly based on the Internet documents for S/MIME [RFC 3851], MIME
[RFC 2045, RFC 2046], and CMS [RFC 3851].

Items of the referenced standards that are not explicitly mentioned in this specification shall
be treated in the same way as specified in the referenced base standards.

This document contains the following chapters:

• Chapter 2 contains requirements for message formats based on S/MIME.

• Chapter 3 lists data structures to be used in S/MIME messages.

• Chapter 4 specifies requirements for file formats for signature and encryption.

• Annex A provides the CMS ASN.1 definitions in alphabetic order.

• References chapter lists the standards on which this part of Common PKI is based.

Common PKI Part 3: CMS based Message Formats Version 2.0

Message Types Based on S/MIME Common PKI Part 3 – Page 6 of 28

2 Message Types Based on S/MIME

S/MIME messages allow combining MIME bodies and protected message parts, the latter
being constructed accordingly to CMS. Several different MIME types and CMS objects MAY
be used in an S/MIME message.

S/MIME supports a variety of message types. Arbitrary MIME messages or parts of a MIME
message can be secured by means of digital signatures and encryption. This process can be
iterated allowing any level of nesting.

Compliant components SHALL support the Common PKI profile for S/MIME, which is
specified in the following sections.

2.1 S/MIME Message Types

Message types are identified by a MIME header field. The type of each MIME message is
defined by its Content-Type field and an optional set of parameters. The Content-Type
consists of a media type and a subtype that specify the particular format. [RFC 2045, RFC
2046]. So far the media types

• text for textual messages,

• image for audio data,

• video for video data,

• application for all other kinds of data, as for example non- interpreted binary data,

• multipart for multiple different data types, and

• message for encapsulated messages have been defined by MIME. The last two being
designed for composed messages.

CMS objects consist of a content type and the content, which contains the data. Compliant
components SHALL support the content types signed-data and enveloped-data that indicate
that the message is protected either by digital signature or by encryption.

S/MIME specifies several message types for encrypted and signed messages. The minimum
requirement for compliant components is the support of the following two S/MIME message
types:

• application/pkcs7-mime for encrypted and signed messages, and

• multipart/signed together with application/pkcs7-signature for signed messages with
separate data and control information in two body parts.

For the sake of interoperability with existing S/MIME products, compliant components MAY
alternatively use the older (experimental) message type application/x-pkcs7-mime and
application/x-pkcs7-signature in place of application/pkcs7-mime respectively
application/pkcs7-signature and SHOULD accept these older message types.
Common PKI Profile: For interoperability backward compatibility with older S/MIME
applications, header protection through the use of the message/rfc822 MIME type as
described in [RFC 3851] chapter 3.1 SHOULD NOT be used by sending applications. Since

Common PKI Part 3: CMS based Message Formats Version 2.0

Message Types Based on S/MIME Common PKI Part 3 – Page 7 of 28

however applying header protection increases security, it is not entirely forbidden.

2.1.1 Message Type for Enveloped Data

Compliant components SHALL support the message type application/pkcs7-mime together
with the smime-type parameter set to the value enveloped-data for protecting the
confident iality of any kind of MIME messages.

Compliant components SHALL support the transformations including preparation of MIME
entity for encryption, canonicalization, encryption, encoding and composition as specified in
S/MIME [RFC 3851, chapter 3].

The canonicalization transformation step can be omitted, if the data are already in a format
that can be uniquely interpreted by the recipient. Compliant components SHALL perform the
canonicalization step for those content types for which a unique presentation independent of
the platform or the environment does not exist. This is for example required for text data.

The transfer encoding step can be omitted, if an 8-bit-transparent transportation medium is
used, or if S/MIME is used for purposes other than Internet-Mail. Compliant components
SHALL perform the transfer encoding step if the message shall always be transported via
Internet-Mail.

The related CMS object to be inserted into the resulting application/pkcs7-mime MIME entity
SHALL be of the CMS content type enveloped-data (see 3.3).

2.1.2 Message Type for Signed Data

Compliant components SHALL support the message type application/pkcs7-mime together
with the smime-type parameter set to the value signed-data for protecting the authent ication
and integrity of arbitrary non clear-signing data. The protected object can be any MIME
message.

Compliant components SHALL support the transformations including preparation of MIME
entity for signing, canonicalization, signature creation, encoding and composition as specified
in [RFC 3851, chapter 3].

The canonicalization transformation step can be omitted, if the data are already in a format
that can be uniquely interpreted by the recipient. Compliant components SHALL perform the
canonicalization step for those content types for which a unique presentation independent of
the platform or the environment does not exist. This is for example required for text data.

The transfer encoding step can be omitted, if an 8-bit-transparent transportation medium is
used or if S/MIME is used for purposes other then Internet-Mail. Compliant components
SHALL perform the transfer encoding step if the message shall always be transported via
Internet-Mail. Transfer encoding, if used, has to comprise the complete message, including
the header fields.

The related CMS object to be inserted into the resulting application/pkcs7-mime MIME entity
SHALL be of the CMS content type signed-data (see 3.2).

Common PKI Part 3: CMS based Message Formats Version 2.0

Message Types Based on S/MIME Common PKI Part 3 – Page 8 of 28

2.1.3 Message Type for Certificates-Only Messages

Compliant components SHALL support the message type application/pkcs7-mime together
with the smime-type parameter set to the value certs-only for transporting certificates in
certification responses.

The related CMS object to be inserted into the resulting application/pkcs7-mime MIME entity
SHALL be of the CMS content type signed-data (see 3.2) whose encapContent and
signerInfos fields must be absent. The field certificates (see 3.2) SHALL at least contain the
signer's certificate, and MAY contain all certificates of the certification path.

NOTE

Compliant components SHALL support the MIME message type application/pkcs10 for
transporting the corresponding PKCS#10 objects in certification requests.

2.1.4 Message Type for Signed Data With Multipart Encoding

Compliant components SHALL support the message type multipart/signed for protecting the
authentication and integrity of arbitrary clear-signing data when multipart encoding applies.
The protected object can be any MIME message.

Compliant components SHALL support the transformations including preparation of MIME
entity for signing, canonicalization, signature creation, encoding and composition as specified
in [RFC 3851, chapter 3].

The canonicalization transformation step can be omitted, if the data are already in a format
that can be uniquely interpreted by the recipient. Compliant components SHALL perform the
canonicalization step for those content types for which a unique presentation independent of
the platform or the environment does not exist. This is for example required for text data.

The transfer encoding step can be omitted, if an 8-bit-transparent transportation medium is
used or if S/MIME is used for purposes other than Internet-Mail. Compliant components
SHALL perform the transfer encoding step if the message shall always be transported via
Internet-Mail. Transfer encoding, if used, has to comprise the complete message, including
the header fields.

The MIME entity to be signed has to be inserted into the first part of the multipart/signed
message. The second part of the multipart/signed message SHALL contain a MIME entity of
type application/pkcs7-signature which in turn is a CMS object of type SignedData (see 3.2)
with absent encapContentInfo.eContent field.

2.1.5 Message Type for Compressed-Only Messages

Common PKI Profile : Compressed-only S/MIME messages are not considered by the
Common PKI specification.

Common PKI Part 3: CMS based Message Formats Version 2.0

Message Types Based on S/MIME Common PKI Part 3 – Page 9 of 28

2.2 S/MIME Message Transformations

Compliant components SHALL support the MIME transformations defined in [RFC 3851,
chapter 3] that are required to create an S/MIME message with the following exception during
the preparation of MIME objects.

Common PKI does not recommend to perform the transfer encoding independent of the
transportation medium in order to avoid any unnecessary expansion of data, and to reduce the
number of decoding steps required to determine the message type of a received message with
multiple encoding. Instead, it is recommended to omit the encoding step, if it is not required.

Compliant components that perform transfer encoding SHALL indicate the used transfer
encoding variant (identity, "quoted-printable", or "base64") in the MIME header Content-
Transfer-Encoding.

Compliant components SHALL use the following MIME header lines for the transformation
composition, during which CMS objects are inserted into the MIME message:

MIME HEADER LINES FOR ENCRYPTED OR SIGNED OBJECTS

• Content-Type including the parameter name,

• Content-Transfer-Encoding, if applicable, and

• Content-Disposition including the parameter filename with the file extension ".p7m" for
enveloped-data and signed-data CMS objects. The extension ".p7c". SHALL be used for
certs-only messages (and ".p10" for PKCS#10 objects).

MIME HEADER LINES FOR MULTIPART SIGN ED OBJECTS

• Content-Type including the parameters protocol, micalg (sha1, sha256, sha384, sha512,
md5 or unknown), and boundary,

• Content-Transfer-Encoding, if applicable, and

• Content-Disposition including the parameter filename with the file extension ".p7s" for
signed-data CMS objects with absent encapContentInfo.eContent field.

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 10 of 28

3 Data Structures in S/MIME Messages

3.1 Summary of Conformance Requirements

Compliant components SHALL support the data structures signed-data and enveloped-data as defined in CMS [RFC3852] including all related
substructures.

DATA STRUCTURE SIGNED -DATA

Within the data structure signed-data compliant components SHALL support the attributes mandated by CMS, and the attribute signing-time also
defined by CMS. The signing-time attribute can be contained either in the signedAttrs or unsignedAttrs fields.

The signing-time attribute SHALL be used with the alternative GeneralizedTime.

The support of further attributes is recommended.

DATA STRUCTURE ENVELOPED-DATA

Within the data structure enveloped-data compliant components SHALL use the version field with the value 0.
Compliant components SHALL NOT use the optional originatorInfo field.
Compliant components SHALL NOT use the alternative structure KeyTransRecipientInfo for asymmetric key management in the recipientInfos
field.
Compliant components SHALL use the version field within KeyTransRecipientInfo with the value 0.
Compliant components SHALL use the alternative IssuerAndSerialNumber for the rid field within KeyTransRecipientInfo.

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 11 of 28

3.1 General CMS Syntax

The general syntax of cryptographic messages is defined by the ASN.1 type ContentInfo, which is a sequence of the fields listed in the following
table

Table 1: Fields of ContentInfo

FIELDS REFERENCES COMMON PKI

SUPPORT # NAME SEMANTICS DOCUMENT CHAP. STATUS TABLE

GEN PROC VALUES

NOTES

1 contentType Object identifier for the type of the
associated and protected object

[RFC
3852]

3 ++ ++ ++ OID:
1.2.840.113549.1.7.1
OID:
1.2.840.113549.1.7.2
OID:
1.2.840.113549.1.7.3

[1]
[2]
[3, 4]

2 content associated and protected object [RFC
3852]

3 ++ Table 2
Table 6

++
++

++
++

SignedData
EnvelopedData

[1] This OID identifies the id-data content type
[2] This OID identifies CMS objects of the type SignedData.
[3] This OID identifies CMS objects of the type EnvelopedData.
[4] CMS defines further content types for CMS objects that are not considered in Common PKI.

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 12 of 28

3.2 Signed-data Content Type

The type for signed-data is defined by the ASN.1 type SignedData is a sequence of the fields listed in the following table.

Table 2: Fields of SignedData

FIELDS REFERENCES COMMON PKI

SUPPORT # NAME SEMANTICS DOCUMENT CHAP. STATUS TABLE

GEN PROC VALUES

NOTES

1 version Version number of CMS syntax [RFC
3852]

5.1 ++ ++ ++ 1
2

3
4

[1]
[5]

[2]
[5]

2 digestAlgorithms Collection (including zero) of
message digest algorithm identifiers

[RFC
3852]

5.1 ++ ++ ++ [3]

3 encap-
ContentInfo

Data to be protected [RFC
3852]

5.1 ++ Table
3

++ ++

4 certificates Collection of certificates [RFC
3852]

5.1 +- +- +- [4]

5 crls Collection of CRLs or other
revocation status information

[RFC
3852]

5.1 +- +- +- [6]

6 signerInfos Collection of per-signer information [RFC
3852]

5.1 ++ Table
4

++ ++

[1] Compliant components SHALL always use the value 1, if non- interpreted binary data shall be protected.
[2] Compliant components SHALL always use the value 3, if data with assigned format identifiers shall be protected.
[3] For permitted hash algorithm identifiers refer to P6.T1 (One-Way Hash Functions) of this Common PKI specification.

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 13 of 28

[4] Compliant components SHALL at least contain the signer's certificate, and, should include all certificates of the certification path(s) of the
signer(s) required by the recipient.

 Common PKI Profile: Only public key certificates and attribute certificates of version v1 according to Common PKI Part 1 SHALL be
included.

[5] These versions are currently not considered in Common PKI.
[6] Common PKI Profile: Only CRLs according to Common PKI Part 1 SHOULD be included. Optionally, OCSP responses according to

Common PKI Part 4 MAY be included. Other types of revocation status information MAY not be included.

The type for the encapContentInfo field is defined by the ASN.1 type EncapsulatedContentInfo, which is a sequence of the fields, listed in the
following table.

Table 3: Fields of EncapsulatedContentInfo

FIELDS REFERENCES COMMON PKI

SUPPORT # NAME SEMANTICS DOCUMENT CHAP. STATUS TABLE

GEN PROC VALUES

NOTES

1 eContentType Object identifier for the type of the
associated and protected content

[RFC
3852]

5.2 ++ ++ ++ OID:
1.2.840.113549.1.7.1

[1]

2 eContent Associated and protected content [RFC
3852]

5.2 +- --
++

++
++

 [2]
[3]

[1] Compliant components SHALL support the value for id-data, which indicates that the signature is related to non- interpreted binary data. The
support for other values is optional.

[2] Compliant components SHALL omit the eContent field if external signatures have to be constructed for S/MIME message types
multipart/signed.

[3] Compliant components SHALL use the eContent field if signatures have to be constructed for S/MIME message types with smime-
type=signed-data.

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 14 of 28

The type for the signerInfos set is defined by the ASN.1 type SignerInfo, which is a sequence of the fields, listed in the following table.

Table 4: Fields of SignerInfo

FIELDS REFERENCES COMMON PKI

SUPPORT # NAME SEMANTICS DOCUMENT CHAP. STATUS TABLE

GEN PROC VALUES

NOTES

1 version Version number of syntax [RFC 3852] 5.3 ++ ++ ++ 1 [1]
2 sid Identification of the signers

certificate
[RFC 3852] 5.3 ++ ++ ++ [2]

3 digestAlgorithm Identification of the signers
hash algorithm

[RFC 3852] 5.3 ++ ++ ++ [3]

4 signedAttrs Collection of signed attributes [RFC 3852] 5.3 +- Table
5

+-
++

++
++

 [4]
[5]

5 signatureAlgorithm Identification of the signers
signature algorithm

[RFC 3852] 5.3 ++ ++ ++ [6]

6 signature Digital signature of the signer [RFC 3852] 5.3 ++ ++ ++
7 unsignedAttrs Collection of unsigned

attributes
[RFC 3852] 5.3 +- Table 5 +- ++ [7]

[1] Compliant components SHALL use the value 1, since the issuerAndSerialNumber alternative shall be used for the sid field.
[2] Compliant components SHALL always use the issuerAndSerialNumber alternative.
[3] The value provided in this field SHALL be contained in the SignedData.digestAlgorithms field (see T2.#2). For permitted hash algorithm

identifiers refer to P6.T1 (One-Way Hash Functions) of this Common PKI specification.
[4] Compliant components MAY include signed attributes in the signedAttrs field if the eContent field is id-data.
[5] Compliant components SHALL include signed attributes in the signedAttrs field if the eContent field is not id-data or if attributes as for

example signing-time shall be linked to the signature.
[6] Compliant components SHALL support the signature algorithms as specified in part 6 of the Common PKI specification.
[7] Compliant components MAY include unsigned attributes.

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 15 of 28

Signed and unsigned attributes are of the ASN.1 type SET OF Attribute. The type Attribute itself is a sequence of the attrType and attrValues fields
that identify an attribute and respectively contain the set of attribute values. The minimum set of signed attributes that compliant components
SHALL support is listed in the following table. This table also provides a list of unsigned attributes that compliant components MAY support.

Table 5: Signed and Unsigned Attributes

ATTRIBUTES REFERENCES COMMON PKI

SUPPORT # NAME

OID

SEMANTICS DOCUMENT CHAP. STATUS TABLE

GEN PROC VALUES

NOTES

1 content-type
id-contentType
{1 2 840 113549 1 9 3}

OID for the type of the
ContentInfo value being
signed in signed-data

[RFC
3852]

11.1 ++ ++ ++ OID that identifies the
type of the data to be
signed

[1]

2 message-digest
id-messageDigest
{1 2 840 113549 1 9 4}

Hash value of the
encapContentInfo.eContent
value being signed in signed-
data

[RFC
3852]

11.2 ++ ++ ++ Hash value OCTET
STRING

[1]

3 signing-time
id-signingTime
{1 2 840 113549 1 9 5}

Time at which the signer
claims to have performed the
signing process

[RFC
3852]

11.3 +- +- ++ Signing time [2], [3]

4 otherSigCert
id-aa-ets-otherSigCert

{1 2 840 113549 1 9 16
2 19}

Sequence of certificate
identifiers starting with the
certificate of the signer

[CAdES] 5.7.3.
3

- - +- [2], [5]

5 certificateRefs
id-aa-ets-certificateRefs

{1 2 840 113549 1 9 16
2 21}

References to the full set of
CA certificates that have
been used to validate an
electronic signature.

[CAdES] 6.2.1 +- +- +- [4]

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 16 of 28

6 revocationRefs
id-aa-ets-revocationRefs
{1 2 840 113549 1 9 16
2 22}

References to the full set of
CRL or OCSP responses that
have been used in the
validation of the signer and
CA certificates in an
electronic signature.

[CAdES] 6.2.2 +- +- +- [4]

7 escTimeStamp
id-aa-ets-escTimeStamp

{1 2 840 113549 1 9 16
2 25}

Timestamp of the hash of the
electronic signature and the
complete validation data

[CAdES] 6.3.5 +- +- +- [4]

8 signingCertificate
id-aa-signingCertificate
{1 2 840 113549 1 9 16
2.12}

Sequence of certificate
identifiers starting with the
certificate of the signer

[RFC
2634]

5.4 +- - +- The issuerSerial field of
the ESSCertID within
SigningCertificate MUST
not be empty.

[2], [5]

9 signingCertificateV2
id-aa-
signingCertificateV2
{1 2 840 113549 1 9 16
2.47}

Sequence of certificate
identifiers starting with the
certificate of the signer

[RFC
5035]

3

+- +- +- [5]

[1] Compliant components SHALL support this signed attribute if the optional signedAttrs field is used.
[2] If present, this optional attribute MUST be a signed attribute.
[3] [RFC 2630]: Dates between 1 January 1950 and 31 December 2049 (inclusive) MUST be encoded as UTCTime. Any dates with year values

before 1950 or after 2049 MUST be encoded as GeneralizedTime.
 Common PKI Profile: Compliant components SHOULD also accept dates between 1 January 1950 and 31 December 2049 encoded as

GeneralizedTime for backwards compatibility with MailTrusT v2.
[4] Common PKI Profile: Compliant components MAY include this unsigned attribute. For the purpose of providing complete validation data, it

is RECOMMENDED that compliant components use this unsigned attribute.

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 17 of 28

[5] The otherSigCert attribute provides the same functionality as the signingCertificate attribute defined by [RFC 2634, 5.4] with the exception
that otherSigCert can be used with hashing algorithms other than SHA-1.

 The new signingCertificateV2 attribute introduced in [RFC5035] does also address the issues of hash functions other than SHA-1 and is
intended to replace both the old [RFC2634] signingCertificate attribute and the original [CAdES] otherSigCert attribute.

3.3 Enveloped-data Content Type

The type for enveloped-data is defined by the ASN.1 type EnvelopedData is a sequence of the fields listed in the following table.

Table 6: Fields of EnvelopedData

FIELDS REFERENCES COMMON PKI

SUPPORT # NAME SEMANTICS DOCUMENT CHAP. STATUS TABLE

GEN PROC VALUES

NOTES

1 version Version number of syntax [RFC
3852]

6.1 ++ ++ ++ 0 [1]

2 originatorInfo Signer information including
certificates and CRLs

[RFC
3852]

6.1 +- -- -- [1]

3 recipientInfos Collection of per-recipient
information

[RFC
3852]

6.1 ++ Table
7

++ ++

4 encryptedContentI
nfo

Encrypted data [RFC
3852]

6.1 ++ Table
9

++ ++

5 unprotectedAttrs Collection of non-encrypted
attributes

[RFC
3852]

6.1 +- -- -- [1]

[1] Compliant components SHALL always use the value 0, which implies that the fields originatorInfo and unprotectedAttrs MUST be absent,
and that all of the RecipientInfo structures are of version 0.

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 18 of 28

The type for the recipientInfos set is defined by the ASN.1 type RecipientInfo, which is a choice of the alternatives, listed in the following table.
These alternatives are used to support three different key management techniques.

Table 7: Alternatives of RecipientInfo

ALTERNATIVES REFERENCES COMMON PKI

SUPPORT # NAME SEMANTICS DOCUMENT CHAP. STATUS TABLE

GEN PROC VALUES

NOTES

1 ktri per-recipient information using
key transport

[RFC
3852]

6.2.1 ++ Table
8

++ ++ [1]

2 kari recipient information using key
agreement

[RFC
3852]

6.2.2 ++ -- -- [1]

3 kekri recipient information using
previously distributed symmetric
key-encryption keys

[RFC
3852]

6.2.3 ++ -- -- [1]

4 pwri recipient information using a
password or shared secret value

[RFC
3852]

6.2.4 ++ -- -- [1]

5 ori recipient information for additional
key management techniques

[RFC
3852]

6.2.5 ++ -- -- [1]

[1] Compliant components shall support the key transport alternative. The other mechanisms are currently not considered in Common PKI.

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 19 of 28

The type for ktri is defined by the ASN.1 type KeyTransRecipientInfo, which is a sequence of the fields, listed in the following table. This structure
shall also be used for the originator as recipient, if the originator himself wants to be able to decrypt the message.

Table 8: Fields of KeyTransRecipientInfo

FIELDS REFERENCES COMMON PKI

SUPPORT # NAME SEMANTICS DOCUMENT CHAP. STATUS TABLE

GEN PROC VALUES

NOTES

1 version Version number of syntax [RFC
3852]

6.2.1 ++ ++ ++ 0 [1]

2 rid Identification of the recipients
certificate

[RFC
3852]

6.2.1 ++ ++ ++ [2]

3 keyEncryptionAlgo
rithm

Identification of the key-
encryption algorithm

[RFC
3852]

6.2.1 ++ ++ ++

4 encryptedKey Encrypted content-encryption key [RFC
3852]

6.2.1 ++ ++ ++

[1] Compliant components SHALL always use the value 0, which implies that the fields originatorInfo and unprotectedAttrs MUST be absent,
and that all of the RecipientInfo structures are of version 0.

[2] Compliant components SHALL always use the issuerAndSerialNumber alternative, which uniquely identifies the certificate of the recipient.
This certificate SHALL contain the key usage extension with the keyEncipherment bit 2 set. The reason is that only public key encryption
keys shall be used for the encryption of the content-encryption key.

Common PKI Part 3: CMS based Message Formats Version 2.0

Data Structures in S/MIME Messages Common PKI Part 3 – Page 20 of 28

The type for encryptedContentInfo is defined by the ASN.1 type EncryptedContentInfo, which is a sequence of the fields, listed in the following
table.

Table 9: Fields of EncryptedContentInfo

FIELDS REFERENCES COMMON PKI

SUPPORT # NAME SEMANTICS DOCUMENT CHAP

TER
STATUS TABLE

GEN PRO VALUES

NOTES

1 contentType Object identifier for the type of the
associated and protected content

[RFC
3852]

6. 1 ++ ++ ++ OID:
1.2.840.113549.1.7.1

[1]

2 contentEncryption
Algorithm

Identification of the content-
encryption algorithm

[RFC
3852]

6. 1 ++ ++ ++

3 encryptedContent Encrypted content-encryption key [RFC
3852]

6. 1 +- ++ ++

[1] Compliant components SHALL support the value for id-data, if non- interpreted binary data have been encrypted. The support for other
values is OPTIONAL.

Common PKI Part 3: CMS based Message Formats Version 2.0

File Signature and Encryption Common PKI Part 3 – Page 21 of 28

4 File Signature and Encryption

Files stored in an archive or transferred via Internet (using FTP or HTTP) can be encrypted
and/or signed. The format of the encrypted/signed file is based on CMS [RFC 3852].

The following CMS container types MUST be supported by Common PKI-compliant
components:

• for encrypted data: enveloped-data

• for signed data: signed-data

• for signed and then encrypted data: enveloped-data with signed-data as content

Other content types MAY, but need not by supported by compliant components. Other
content types SHOULD NOT be created by components, if the file is intended for another
user, as it cannot be assumed that the receiver is able to handle those types.

4.1 File Signature

Signed files will be represented by the SignedData content type. The certificates field of
SignedData MUST contain the public key certificate of the signer. A reference to this
certificate MUST be included in the signedAttributes of the corresponding SignerInfo. It
SHOULD be included using the SigningCertificateV2 attribute, which is defined in [RFC
5035]. The older SigningCertificate attribute form of [RFC 2634] is permitted for backward
compatibility, but SHOULD NOT be used. Additionally, the certs field SHOULD contain all
certificates in the certificate path up to the certificate of root or top-level CA.

[RFC RFC3852] allows including attribute certificates in the certificate list. For all attribute
certificates, which are intended by the signer to be used for the signature, a reference MUST
be included in the signedAttributes of the corresponding SignerInfo using the
SigningCertificate attribute. The issuerSerial field of the ESSCertID within SigningCertificate
MUST not be empty. These informations are intended for the recipient, so that all certificates
required for the verification of the file signature can easily be obtained. Note that certificates
provided in the ‘certificates’ field are not part of the signed content and are thus not protected
against substitution attacks.

The signed-data format allows parallel signatures of the file content. This option MUST be
supported by Common PKI-compliant components. In essence, additional signatures on the
content are appended to a list of signatures in the readily available container. All certificates
of the signers are to be collected in the ‘certificates’ field of SignedData. The order of
certificates in the list is irrelevant.

The signing-time attribute, specifying the time at which the signer (purportedly) performed
the signing process, MUST always be present in signed-data, so that the reference time for
signature validation can be retrieved from the signed document. Signing- time MUST be a
signed attribute.

The countersignature attribute type specifies one or more signatures on the contents octets of
the DER encoding of the signatureValue field of a SignerInfo value in signed-data. Thus, the
counterSignature attribute type countersigns (signs in serial) another signature. For the

Common PKI Part 3: CMS based Message Formats Version 2.0

File Signature and Encryption Common PKI Part 3 – Page 22 of 28

simplicity of implementations, counter signatures are not necessary to be supported by
compliant components. Hence, the attribute counterSignature SHOULD NOT be inserted by
components, if the file is intended for another user, as it cannot be assumed that the receiver
of the countersigned document is able to verify the counter signature. Nevertheless,
components MUST be able to parse the counterSignature attribute.

4.2 File Encryption

Three key management techniques are described in CMS to provide for a symmetric content-
encryption key: key transport, key agreement, and previously distributed keys. Common PKI-
compliant components MUST only support the key transport mechanism, as it is appropriate
for the most common PKI-based “store-and-forward” type of communication. Other
mechanisms MAY be supported, but should not be used, if the recipient’s component is not
known to support the used option.

In the key transport mechanism, the symmetric content-encryption key is encrypted using the
recipient's public key. Users, encrypting files on their local computer, can use their own
public key for this purpose. As recipient’s information, including the encrypted symmetric
key, MUST always be present in the encrypted file, the use of the enveloped-data container
type is indicated (Encrypted-data cannot store such information.).

Common PKI Part 3: CMS based Message Formats Version 2.0

Annex A: ASN.1 Definitions Common PKI Part 3 – Page 23 of 28

Annex A: ASN.1 Definitions

This chapter contains a list of ASN.1 definitions that are used in this part of the Common PKI
specification in alphabetical order.

Attribute ::= SEQUENCE {

 attrType OBJECT IDENTIFIER,

 attrValues SET OF AttributeValue }

AttributeValue ::= ANY

CertificateChoices ::= CHOICE {

 certificate Certificate,

 extendedCertificate [0] IMPLICIT ExtendedCertificate,

 v1AttrCert [1] IMPLICIT AttributeCertificateV1,

 v2AttrCert [2] IMPLICIT AttributeCertificateV2,

 other [3] IMPLICIT OtherCertificateFormat }

CertificateRevocationLists ::= SET OF CertificateList

CertificateSet ::= SET OF CertificateChoices

CMSVersion ::= INTEGER { v0(0), v1(1), v2(2), v3(3), v4(4) }

ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

ContentInfo ::= SEQUENCE {

 contentType ContentType,

 content [0] EXPLICIT ANY DEFINED BY contentType }

ContentType ::= OBJECT IDENTIFIER

DigestAlgorithmIdentifier ::= SET OF AlgorithmIdentifier

DigestAlgorithmIdentifiers::= SET OF DigestAlgorithmIdentifier

EncapsulatedContentInfo ::= SEQUENCE {

 eContentType ContentType,

 eContent [0] EXPLICIT OCTET STRING OPTIONAL }

Common PKI Part 3: CMS based Message Formats Version 2.0

Annex A: ASN.1 Definitions Common PKI Part 3 – Page 24 of 28

EncryptedContent ::= OCTET STRING

EncryptedContentInfo ::= SEQUENCE {

 contentType ContentType,

 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,

 encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }

EncryptedKey ::= OCTET STRING

EnvelopedData ::= SEQUENCE {

 version CMSVersion,

 originatorInfo [0] IMPLICIT OriginatorInfoOPTIONAL,

 recipientInfos RecipientInfos,

 encryptedContentInfo EncryptedContentInfo,

 unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL
}

id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }

id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }

id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

Common PKI Part 3: CMS based Message Formats Version 2.0

Annex A: ASN.1 Definitions Common PKI Part 3 – Page 25 of 28

IssuerAndSerialNumber ::= SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber }

KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

KeyTransRecipientInfo ::= SEQUENCE {

 version CMSVersion,

 rid RecipientIdentifier,

 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,

 encryptedKey EncryptedKey}

MessageDigest ::= OCTET STRING

OriginatorInfo ::= SEQUENCE {

 certs [0] IMPLICIT CertificateSet OPTIONAL,

 crls [1] IMPLICIT RevocationInfoChoicesOPTIONAL }

OtherCertificateFormat ::= SEQUENCE {

 otherCertFormat OBJECT IDENTIFIER,

 otherCert ANY DEFINED BY otherCertFormat }

OtherRevocationInfoFormat ::= SEQUENCE {

 otherRevInfoFormat OBJECT IDENTIFIER,

 otherRevInfo ANY DEFINED BY otherRevInfoFormat }

RecipientIdentifier ::= CHOICE {

 issuerAndSerialNumber IssuerAndSerialNumber,

 subjectKeyIdentifier [0] SubjectKeyIdentifier}

Common PKI Part 3: CMS based Message Formats Version 2.0

Annex A: ASN.1 Definitions Common PKI Part 3 – Page 26 of 28

RecipientInfo ::= CHOICE {

 ktri KeyTransRecipientInfo,

 kari [1] KeyAgreeRecipientInfo,

 kekri [2] KEKRecipientInfo,

 pwri [3] PasswordRecipientInfo,

 ori [4] OtherRecipientInfo }

RecipientInfos ::= SET OF RecipientInfo

RevocationInfoChoices ::= SET OF RevocationInfoChoice

RevocationInfoChoice ::= CHOICE {

 crl CertificateList,

 other [1] IMPLICIT OtherRevocationInfoFormat }

SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

SignatureValue ::= OCTET STRING

SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

SignedData ::= SEQUENCE {

 version CMSVersion,

 digestAlgorithms DigestAlgorithmIdentifiers,

 encapContentInfo EncapsulatedContentInfo,

 certificates [0] IMPLICIT CertificateSet OPTIONAL,

 crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,

 signerInfos SignerInfos}

SignerIdentifier ::= CHOICE {

 issuerAndSerialNumber IssuerAndSerialNumber,

 subjectKeyIdentifier [0] SubjectKeyIdentifier}

Common PKI Part 3: CMS based Message Formats Version 2.0

Annex A: ASN.1 Definitions Common PKI Part 3 – Page 27 of 28

SignerInfo ::= SEQUENCE {

 version CMSVersion,

 sid SignerIdentifier,

 digestAlgorithm DigestAlgorithmIdentifier,

 signedAttrs [0] IMPLICIT SignedAttributesOPTIONAL,

 signatureAlgorithm SignatureAlgorithmIdentifier,

 signature SignatureValue,

 unsignedAttrs [1] IMPLICIT UnsignedAttributesOPTIONAL }

SignerInfos ::= SET OF SignerInfo

SigningTime ::= Time

SubjectKeyIdentifier ::= OCTET STRING

Time ::= CHOICE {

 utcTime UTCTime,

 generalTime GeneralizedTime }

UnprotectedAttributes ::= SET SIZE (1..MAX) OF Attribute

UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute

Common PKI Part 3: CMS based Message Formats Version 2.0

References Common PKI Part 3 – Page 28 of 28

References

[CAdES] ETSI TS 101 733 v1.7.4: Electronic Signatures and Infrastructures
(ESI); CMS Advanced Electronic Signatures (CAdES), July 2008

[RFC 2045] N. Freed, N. Borenstein: Multipurpose Internet Mail Extensions
(MIME) l: Part One: Format of Internet Mail Bodies; November 1996

[RFC 2046] N. Freed, N. Borenstein: Multipurpose Internet Mail Extensions
(MIME) l: Part Two: Media Types; November 1996

[RFC 2634] Hoffman, P.: Enhanced Security Services for S/MIME, June 1999

[RFC 3851] B. Ramsdell: Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Message Specification, July 2004

[RFC 3852] R. Housley: Cryptographic Message Syntax (CMS), July 2004

[RFC 5035] J. Schaad: Enhanced Security Services (ESS) Update: Adding CertID
Algorithm Agility, August 2007

COMMON PKI SPECIFICATIONS
FOR INTEROPERABLE APPLICATIONS

FROM T7 & TELETRUST

 SPECIFICATION

PART 4

OPERATIONAL PROTOCOLS

VERSION 2.0 – 20 JANUARY 2009

Common PKI Part 4: Operational Protocols Version 2.0

Contact Information Common PKI Part 4 – Page 2 of 35

Contact Information

The up-to-date version of the Common PKI specification can be downloaded from
www.common-pki.org or from www.common-pki.de
Please send comments and questions to common-pki@common-pki.org.

Editors of Common PKI specifications:

Hans-Joachim Bickenbach

Jürgen Brauckmann

Alfred Giessler

Tamás Horváth

Hans-Joachim Knobloch

© T7 e.V. and TeleTrusT e.V., 2002-2009

Common PKI Part 4: Operational Protocols Version 2.0

Document History Common PKI Part 4 – Page 3 of 35

Document History

VERSION
DATE

CHANGES

1.0
30.09.2001

First public edition

1.0.1
15.11.2001

A couple of editorial and stylistic changes:
- references to SigG-specific issues eliminated from core documents
- core documents (Part 1-7) and optional profiles have been separated in different PDF

documents.
1.0.2
19.07.2002

Several editorial changes and bug-fixes. The most relevant changes affecting technical aspects
are:
1) ‘dc’ (DomainComponent) attribute and dcObject, a corresponding auxiliary class added to

the list supported X.500 attributes. (T1.#25, T2.#10)
2) Requirements eased on the necessary number of certificates delivered in signed OCSP

requests and responses. Only the signing EE certificate MUST be supplied, CA certificates
are still recommended to be included. (T5.#13, T8.#7)

3) The certID in a SingleResponse MUST be built using SHA-1. Processing components
(typically the responder) MUST support SHA-1 and SHOULD support RIPEMD160 and
MD5. (T6.[5])

4) the certID in a SingleResponse MUST be identical to that in the corresponding (single)
Request. (T8.[7])

5) The ASN.1 definition of the good field was erroneous in v101. The correct tagging modus
is IMPLICIT. (T8.#25)

6) HTTP MUST be employed for transporting TSP messages. (Section 5)
1.0.2
11.08.2003

Incorporated all changes from Corrigenda version 1.2

1.1

16.03.2004

Several editorial changes.

1.1

13/10/2008

Incorporated all changes from Corrigenda to ISIS-MTT 1.1

2.0
20/Jan/2009

Name change from ISIS-MTT to Common PKI.
Adapted to new versions of the base standards:

- ETSI TS 101 861 v1.3.1
- RFC 2616
- RFC 3739
- RFC 4510
- RFC 4511
- RFC 4512
- RFC 4513
- RFC 4514
- RFC 4516
- RFC 4517
- RFC 4519
- RFC 4522
- RFC 4523
- RFC 5280
- X.509:2005

Various corrections and clarifications.
Removed remarks on delta CRLs, that are covered in Part 1.

Common PKI Part 4: Operational Protocols Version 2.0

Table of Contents Common PKI Part 4 – Page 4 of 35

Table of Contents

1 Preface... 5

1.1 Compatibility Aspects..6

2 Directory Access via LDAP ... 7

2.1 The Common PKI LDAP Schema ..8

2.2 Access Protocol ...17

3 Directory Access via OCSP ... 19

3.1 Protocol Elements ..19

3.1.1 Standard OCSP Extensions ..26
3.1.2 Common PKI Private OCSP Extensions ...29

3.2 Certificate Contents ...30

3.2.1 Queried certificates..30
3.2.2 Responder’s certificates...30

3.3 Transport over HTTP..31

4 Directory Access via FTP and HTTP .. 32

5 Time Stamp Protocol (TSP)... 33

References... 34

Common PKI Part 4: Operational Protocols Version 2.0

Preface Common PKI Part 4 – Page 5 of 35

1 Preface

Operational protocols are required in a public key infrastructure (PKI) to deliver certificates,
CRLs or certificate status information to certificate using systems, such as mail clients or
Internet Browsers. It is the intention of this Common PKI Specification to select a “necessary
minimum” of possible repository functions and access methods, which shall be supported by
all Common PKI-compliant repositories and client systems. In this way, interoperability
within the Common PKI community shall be achieved, which allows the automatic
verification of signatures and certificate paths, independently of the client implementation and
respectively of the directory service provider. This Common PKI standard builds on the most
common form of certificate repository, the X.500 directory and on access methods that are
specified in PKIX Internet standards, namely LDAP v3 (Light Weigh Directory Access,
Version 3) and OCSP v1 (Online Certificate Status Protocol). As for the transport of protocol
information between directory and clients, this specification restricts itself to the TCP/IP-
based protocols LDAP (for LDAP-access) and HTTP (for OCSP).

PKIX Standards (RFCs) describe methods for the storage and retrieval of public key
certificates (PKCs) and certificate revocation lists (CRLs) of PKCs. Common PKI provides a
profile for attribute certificates (ACs) too. Since standardization work on attribute certificates
(ACs) has just recently begun at IETF, RFCs does not currently concern how to deal with
ACs and CRLs of ACs in a directory. Still, there exist a draft paper [DraftSchema] describing
how to include ACs and CRLs on ACs in an LDAP directory schema. Considering that the
paper is still in the ‘draft’ state, that the syntaxes and attribute types defined there are not yet
supported by off-the-shelf directory servers and that there exists no paper yet on how to deal
with ACs within OCSP, this Common PKI Specification proposes to handle ACs and CRLs
of ACs within the LDAP/OCSP-infrastructure as if they were PKCs and respectively CRLs of
PKCs. This is also the approach followed by current system implementations.

A further important service in a PKI is time-stamping. In order to associate a datum (a
message or document) with a particular point in time, a Time Stamp Authority (TSA) needs to
be used. This Trusted Third Party provides a "proof-of-existence" for this particular datum at
an instant in time. This can then be used, for example, to verify that a digital signature was
applied to a message before the corresponding certificate was revoked, thus allowing a
revoked PKC to be used for verifying signatures created prior to the time of revocation. The
TSA can also be used to indicate the time of submission when a deadline is critical, or to
indicate the time of transaction for entries in a log. For the sake of interoperability, this
document specifies a time stamp protocol (TSP) to acquire and obtain time stamp from a
server. This specification relies on the PKIX standard [RFC3161] and, in particular, on the
TSP-Profile of ETSI [ETSI-TSP].

As this Common PKI specification is intended to be kept at the necessary minimum, the
transport of certificates and CRLs via email is NOT required to be supported (required by
[MTTv2]), whereas the support of FTP and HTTP for the transport as defined in [RFC2585]
is optional (just as in [MTTv2]). Other novel services, currently being worked out by IETF,
such as Repository Locator Service (to find repository servers of different types and
locations), Open CRL Distribution Point, Simple Certificate Validation Protocol, Delegated
Path Validation (an extension of OCSP) and Data Certification, are similarly not part of this
specification.

Common PKI Part 4: Operational Protocols Version 2.0

Preface Common PKI Part 4 – Page 6 of 35

1.1 Compatibility Aspects
This specification is based on IETF documents (RFCs and drafts) and contains basically
profiling information to tailor those standards to the specific needs of the target application
area. Where necessary, this Common PKI specification adds new definitions to those in the
PKIX documents or restricts the usage of available data components in some way. As usual in
the Common PKI Specification, such definitions are always commented and the
corresponding note is marked with the words ‘Common PKI Profile’.

Besides conformance with international standards, backward compatibility with [ISIS] and
[MTTv2] will be provided, so that available systems and information (e.g. certificates, signed
documents) can further be used.

The LDAP protocol (Lightweight Directory Access Protocol) presented here is based on
LDAP v3 [RFC4510] et sqq. Nevertheless, only protocol elements specified in LDAP v2
[RFC1777] are and SHOULD be used in Common PKI-compliant PKI. Special attention will
be paid to the handling of attribute certificates (ACs) and revocation lists (CRLs) of ACs, as
these content types are currently being worked out by IETF and are thus not yet part of
standards (RFCs).

The OCSP v1 protocol, which must be supported by all conforming certification authorities,
is defined in [RFC2560] and will be profiled in this Common PKI specification.

When offering or accessing time stamp services, Common PKI–compliant systems MUST
apply the protocol defined in [RFC3161] and profiled in [ETSI-TSP]. Except for hash
algorithm support, no further profiling information is added by this specification to the profile
of ETSI.

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 7 of 35

2 Directory Access via LDAP

The LDAP protocol (Lightweight Directory Access Protocol) presented here is based on
LDAP v3 [RFC4510] et sqq. Basically, only protocol elements specified in LDAP v2
[RFC1777] are and MAY be used in Common PKI-compliant PKI. Nevertheless, Common
PKI-compliant systems MUST employ LDAP v3. The reason for this decision lies in the
usage of binary attribute types and UTF8 strings in requests as described below.

Basically, attribute values are stored and retrieved by an LDAP v2 directory in string
representation, described in [RFC1778]. However, the string representation is basically suited
to v1 PKCs and v1 CRLs and is not appropriate for v3 PKCs and v2 CRLs, since there has
been no string form defined yet for the numerous extension types included in those data
structures.

As a reaction to the above encoding problem of some attribute values, LDAP v3 introduces
the binary syntax, which is consistent with the above mentioned way of encoding. By
including the binary option in requests, clients can request the LDAP v3 directory to store or
retrieve attribute values of any type (!) in binary encoded form. According to [RFC4523], this
latter option MUST always be used in requests for storage and requests of certificates and
CRLs. This means that requests on LDAP v2 and respectively on LDAP v3 servers are
different.

This Common PKI specification proposes to handle ACs and CRLs of ACs within the
LDAP/OCSP-infrastructure as if they were PKCs and respectively CRLs of PKCs. This
means that ACs and CRLs on ACs will be stored in their DER-encoded binary representation
in attributes of type userCertificate and respectively certificateRevocationList, just as PKCs
and respectively CRLs of PKCs. Common PKI-compliant clients MUST be prepared to
receive a DER-encoded AttributeCertificate object in place of a Certificate and to properly
process it. There is no difference between the CRL-syntax for PKCs and respectively for ACs,
the syntax CertificateList is employed in both cases.

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 8 of 35

Common PKI Profile: Note that handling PKCs and ACs in the same way is a different
approach than that followed in [X.509:2005]. In that document, ACs are forced to be kept
separated from PKCs: ACs and CRLs of ACs are kept in different directory attributes
(attributeDescriptorCertificate, attributeCertificateRevocationList and
attributeAuthorityRevocationList). Furthermore, [X.509:2005] forbids the same CA to issue
the same CRL to keep information about PKCs and ACs at same time. In contrast to that,
Common PKI allows CAs to issue PKCs and ACs and to publish corresponding revocation
information in the same CRL. In order to be able to unambiguously identify PKCs and ACs
issued by the same CA, serial numbers MUST be unique among all PKCs and ACs, a further
difference compared to the PKIX scheme.

2.1 The Common PKI LDAP Schema

The nature of this section is purely informative. Its purpose is to provide an example of an
LDAP-Schema, and it does not specify requirements on the implementation of an LDAP-
Schema.

Common PKI conforming directories shall be prepared to store the following data objects:
• root certificates
• cross certificates
• CA certificates
• end entity (or user) certificates, including PKCs as well as ACs
• revocation lists (CRLs), that may include entries for PKCs as well as ACs
• delta revocation lists, corresponding to the above complete CRLs

This section illustrates a directory schema, i.e. object classes, attribute types and a Directory
Information Tree (DIT) structure that MAY (but need not) be used to implement a compliant
directory. The following design goals have been followed in the design of the schema:
• end entity certificates and CRLs SHOULD be grouped around the entry representing the

issuing CA instance
• as far as possible, standard object classes, attribute types and syntaxes SHOULD be used,

defined in RFCs
• it MUST be possible, to find a certain certificate using the issuer and subject DNames and

the certificate serial number contained in the certificate.
• it MUST be possible to search for certificates of an end entity with the help of partial

information about the end entity, such as name (surname or commonName), affiliation
(organization, organizational unit), address (postalAddress, e.g. in case of private persons
without affiliation).

The exemplary DIT structure is depicted in Figure 1. In the following, we present object
classes and attributes types that MAY be used in the directory entries of the proposed schema.
The formal definitions are given in ASN.1 syntax.

Common PKI Profile: Note that the only requirement for a directory to be Common PKI-
compliant is that the directory delivers adequate responses to a relatively small set of requests
that are specified in Section 2.2. This means that conforming schema implementations MAY

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 9 of 35

slightly differ from the one described here, according to differences in the “built- in” features
(attribute types and object classes) of a directory product or to some other design criteria.

Entry
'COUNTRY'

Entry 'ORGANISATION'
(cert.authority, trust center)

Entry 'ORGANIZATIONAL UNIT'
(certificate and/or CRL issuer)

Entry 'COMMON NAME'
(end entity certificate)

...

...

...

� CA-, DIR-, TSP-certificates
� cross certificate for CA certs.
� CRL, delta CRL

� one end entity certificate

� root certificates
� cross certificates for root certs.
� CRL, delta CRL

Figure 1: An exemplary DIT structure for Common PKI-compliant directories

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 10 of 35

Table 1: Attribute Types and Attribute Sets

REFERENCES # ASN.1 DEFINITION SEMANTICS SUPPORT
LDAP
SERVER

RFC TABLE
NO
TES

 STANDARD X.520 DNAME ATTRIBUTES
1 (2.5.4.41 NAME ’name’

 EQUALITY caseIgnoreMatch
 UBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

an abstract class used to derive other DName
attribute types below
1.3.6.1.4.1.1466.115.121.1.15 refers to the
Directory String syntax [RFC4517].

no
relevance

RFC4519
2.18

2 (2.5.4.3 NAME ’cn’
 SUP name)

 ++ RFC4519
2.2

3 (2.5.4.4 NAME ’sn’
 SUP name)

 + RFC4519
2.32

4 (2.5.4.42 NAME ’givenName’
 SUP name)

 + RFC4519
2.12

5 (2.5.4.5 NAME ’serialNumber’
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.44)

1.3.6.1.4.1.1466.115.121.1.44 refers to the
Printable String syntax [RFC4517].

++ RFC4519
2.21

 [1]

6 (2.5.4.6 NAME ’c’
 SUP name
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.11
 SINGLE- VALUE)

’countryName’ in X.500
1.3.6.1.4.1.1466.115.121.1.11 refers to the
Country String syntax [RFC4517].

++ RFC4519
2.2

7 (2.5.4.7 NAME ’l’
 SUP name)

’localityName’ in X.500 + RFC4519
2.16

8 (2.5.4.8 NAME ’st’
 SUP name)

’stateOrProvinceName’ in X.500 + RFC4519
2.33

9 2.5.4.9 NAME ’street’
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

’streetAddress’ in X.500
1.3.6.1.4.1.1466.115.121.1.15 refers to the
Directory String syntax [RFC4517].

+ RFC4519
2.34

10 (2.5.4.10 NAME ’o’
 SUP name)

’organizationName’ in X.500 ++ RFC4519
2.19

11 (2.5.4.11 NAME ’ou’
 SUP name)

’organizationalUnitName’ in X.500 ++ RFC4519
2.20

12 (2.5.4.12 NAME ’title’
 SUP name)

 +- RFC4519
2.38

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 11 of 35

13 (2.5.4.15 NAME ’businessCategory’
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

occupation of a person
1.3.6.1.4.1.1466.115.121.1.15 refers to the
Directory String syntax [RFC4517].

- RFC4519
2.1

 [2]

14 (2.5.4.16 NAME ’postalAddress’
 EQUALITY caseIgnoreListMatch
 SUBSTR caseIgnoreListSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.41)

1.3.6.1.4.1.1466.115.121.1.41 refe rs to the
Postal Address syntax [RFC4517].

+ RFC4519
2.23

15 (2.5.4.17 NAME ’postalCode’
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

1.3.6.1.4.1.1466.115.121.1.15 refers to the
Directory String syntax [RFC4517].

+ RFC4519
2.24

16 (2.5.4.43 NAME ’initials’
 SUP name)

 +- RFC4519
2.14

17 (2.5.4.44 NAME ’generationQualifier’
 SUP name)

 +- RFC4519
2.11

18 2.5.4.46 NAME ’dnQualifier’
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.44)

distinguished name qualifier: disambiguating
information to be added to a DName, if for
example two DSAs, that are to be merged,
contain entries with the same DName
1.3.6.1.4.1.1466.115.121.1.44 refers to the
Printable String syntax [RFC4517].

+- RFC4519
2.

 PKI-SPECIFIC ATTRIBUTES
19 (2.5.4.36 NAME ’userCertificate’

 DESC ’X.509 user certificate’
 EQUALITY certificateExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.8)

As required by this attribute type’s syntax,
values of this attribute are requested and
transferred using the attribute description
"userCertificate;binary".

++ RFC4523
4.1

20 (2.5.4.37 NAME ’cACertificate’
 DESC ’X.509 CA certificate’
 EQUALITY certificateExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.8)

As required by this attribute type’s syntax,
values of this attribute are requested and
transferred using the attribute description
"cACertificate;binary".

++ RFC4523
4.2

21 (2.5.4.40 NAME ’crossCertificatePair’
 DESC ’X.509 cross certificate pair’
 EQUALITY certificatePairExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.10)

As required by this attribute type’s syntax,
values of this attribute are requested and
transferred using the attribute description
"crossCertificatePair;binary".

++ RFC4523
4.3

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 12 of 35

22 (2.5.4.38 NAME ’authorityRevocationList’
 DESC ’X.509 authority revocation list’
 EQUALITY certificateListExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.9)

As required by this attribute type’s syntax,
values of this attribute are requested and
transferred using the attribute description
"authorityRevocationList;binary".

++ RFC4523
4.5

23 (2.5.4.39 NAME ’certificateRevocationList’
 DESC ’X.509 certificate revocation list’
 EQUALITY certificateListExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.9)

As required by this attribute type’s syntax,
values of this attribute are requested and
transferred using the attribute description
"certificateRevocationList;binary".

++ RFC4523
4.4

24 (2.5.4.53 NAME ’deltaRevocationList’
 DESC ’X.509 delta revocation list’
 EQUALITY certificateListExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.9)

As required by this attribute type’s syntax,
values of this attribute are requested and
transferred using the attribute description
"deltaRevocationList;binary".

+- RFC4523
4.6

25 (0.9.2342.19200300.100.1.25 NAME ’dc’
 EQUALITY caseIgnoreIA5Match
 SUBSTR caseIgnoreIA5SubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 SINGLE- VALUE)

 ’domainComponent’ in RFC 1274
1.3.6.1.4.1.1466.115.121.1.26 refers to the
IA5 String syntax [RFC4517].

+- RFC4519
2.4

 ATTRIBUTE SETS USED IN OBJECT CLASS DEFINITIONS
26 PostalAttributeSet ATTRIBUTE ::= {

 postalAddress | postalCode | streetAddress }
 X.521 5.2 [3]

27 LocaleAttributeSet ATTRIBUTE ::= {
 localityName | stateOrProvinceName | streetAddress }

 X.521 5.3

28 OrganizationalAttributeSet ATTRIBUTE ::= {
 PostalAttributeSet | LocaleAttributeSet | businessCategory }

 X.521 5.4 [3]

[1] [X520], [RFC4519]: serial number of a device
[RFC3739]: this attribute is used to disambiguate subject DNames of qualified certificates, e.g. if a CA would need to issue certificates to different entities, that otherwise
have the same DName
Common PKI Profile: The interpretation of this attribute is as in [RFC3039] and refers to the instance (person or organization) represented by the DName, i.e. to the
person, even if the DName indicates an affiliation of the person in form of an organization attribute.

[2] [X.520]: occupation of some common object, e.g. person or organization
[RFC4519] 5.16: This attribute describes the kind of business performed by an organization.
Common PKI Profile: the interpretation of this attribute is as in [X520], i.e. occupation of a person or organization

[3] Common PKI Profile: These attribute set definitions are not identical with those in X.521. Attributes not listed in this table, being not relevant in this specification, have
been left out.

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 13 of 35

Table 2: Object Classes

REFERENCES # ASN.1 DEFINITION SEMANTICS SUPPORT
LDAP
SERVER

RFC TABLE
NO
TES

 X.509 OBJECT CLASSES
1 (2.5.6.0 NAME ’top’ ABSTRACT MUST objectClass) abstract class to derive other classes below no

relevance
RFC4512
2.4.1

2 (2.5.6.2 NAME ’country’
 SUP top
 STRUCTURAL
 MUST c
 MAY (searchGuide $
 description))

class to define country entries in the DIT ++ RFC4519
3.2

3 (2.5.6.4 NAME ’organization’
 SUP top
 STRUCTURAL
 MUST o
 MAY (userPassword $ searchGuide $ seeAlso $
 businessCategory $ x121Address $ registeredAddress $
 destinationIndicator $ preferredDeliveryMethod $
 telexNumber $ teletexTerminalIdentifier $
 telephoneNumber $ internationalISDNNumber $
 facsimileTelephoneNumber $ street $ postOfficeBox $
 postalCode $ postalAddress $ physicalDeliveryOfficeName $
 st $ l $ description))

 ++ RFC4519
3.8

4 (2.5.6.5 NAME ’organizationalUnit’
 SUP top
 STRUCTURAL
 MUST ou
 MAY (businessCategory $ description $ destinationIndicator $
 facsimileTelephoneNumber $ internationalISDNNumber $ l $
 physicalDeliveryOfficeName $ postalAddress $ postalCode $
 postOfficeBox $ preferredDeliveryMethod $
 registeredAddress $ searchGuide $ seeAlso $ st $ street $
 telephoneNumber $ teletexTerminalIdentifier $
 telexNumber $ userPassword $ x121Address))

 ++ RFC4519
3.11

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 14 of 35

5 (2.5.6.6 NAME ’person’
 SUP top
 STRUCTURAL
 MUST (sn $
 cn)
 MAY (userPassword $
 telephoneNumber $
 seeAlso $ description))

 ++ RFC4519
3.12

 PKIX -SPECIFIC OBJECT CLASSES
6 (2.5.6.15 NAME ’strongAuthenticationUser’

 DESC ’X.521 strong authentication user’
 SUP top AUXILIARY
 MUST userCertificate)

 6 or 7:
++

RFC4523
5.5

 [1]

7 (2.5.6.21 NAME ’pkiUser’
 DESC ’X.509 PKI User’
 SUP top AUXILIARY
 MAY userCertificate)

 6 or 7:
++

RFC4523
5.1

8 (2.5.6.16 NAME ’certificationAuthority’
 DESC ’X.509 certificate authority’
 SUP top AUXILIARY
 MUST (authorityRevocationList $
 certificateRevocationList $ cACertificate)
 MAY crossCertificatePair)

 8 or 9:
++

RFC4523
5.7

 [2]

9 (2.5.6.22 NAME ’pkiCA’
 DESC ’X.509 PKI Certificate Authority’
 SUP top AUXILIARY
 MAY (cACertificate $ certificateRevocationList $
 authorityRevocationList $ crossCertificatePair))

 8 or 9:
++

RFC4523
5.2

10 (1.3.6.1.4.1.1466.344 NAME ’dcObject’
 SUP top
 AUXILIARY
 MUST dc)

An auxiliary class defined in X.500 style to
contain a domainComponent attribute

+- RFC4519
3.3

 COMMON PKI-SPECIFIC OBJECT CLASSES
11 (2.262.1.10.3.6 NAME ’pkiUserData’

 DESC ’joint-iso-ccitt(2) bmpt(262) telekom(1) security(10)
 objectClass(3) pkiUserData(6)’
 SUP top AUXILIARY
 MAY (countryName $ serialNumber $ givenName $

 ++

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 15 of 35

 title $ postalAttributeSet $ organizationName $
 organizationalUnitName $ organizationalAttributeSet))

)
12 (2.262.1.10.3.7 NAME ’pkiCaData’

 DESC ’joint-iso-ccitt(2) bmpt(262) telekom(1) security(10)
 objectClass(3) pkiCaData(7)’
 SUP top AUXILIARY
 MUST commonName
 MAY deltaRevocationList)

 ++

[1] [RFC4523]: This object class is deprecated in favor of pkiUser.
[2] [RFC4523]: This object class is deprecated in favor of pkiCA.

Table 3: Entries of the Proposed Directory Schema

ENTRY NAME ENTRY STRUCTURE SEMANTICS REFEREN-
CES

NO
TES

1 COUNTRY Object class: Country
 Mandatory attributes: countryName (DName attribute)

This entry is the root entry of the DIT in the proposed schema. T2.#2

2 ORGANIZAT
ION

Object class: Organization
 Mandatory attributes: organizationName (DName attribute)
Auxiliary object class: pkiCA
 Optional attributes: caCertificate
 authorityRevocationList
 crossCertificatePair
 certificateRevocationList
Auxiliary object class: pkiCAData:
 Mandatory attributes: commonName
 Optional attributes: deltaRevocationLis t

This entry corresponds to a certification authority or a trust
center. Each authority MUST be represented by exactly one
such entry.
The organizationName DName-attribute MUST contain the
organizationName of the authority in the same form as in the
issuer field the certificates it issues.
If the authority issues certificates for other CAs, then this
entry MAY contain: self-signed root-certificates or CA-
certificates of the authority, an ARL and/or cross certificates
of those certificates and/or a common CRL of CA certificates
issued by all signing instances of the authority,
If the authority issues certificate for end entities, then the entry
MAY contain: a common CRL (and optionally a delta-CRL)
of end entity certificates issued by all signing instances of the
authority.
(Signing instances are represented by subordinate
ORGANIZATION UNIT entries, see below).

T2.#3,9,11 [1]

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 16 of 35

3 ORGANI-
ZATIONAL
UNIT

Object class: OrganizationalUnit
 Mandatory attributes: organizationalUnitName
 (DName attribute)
Auxiliary object class: pkiCA
 Optional attributes: caCertificate
 certificateRevocationList
Auxiliary object class: pkiCAData:
 Mandatory attributes: commonName
 Optional attributes: deltaRevocationList

This entry corresponds to exactly one signing instance of a
certification authority, i.e. to a CA-certificate. Different CA-
certificates of a certification authority are stored in different
entries of the DIT.
The organizationalUnitName DName-attribute MUST contain
the commonName of the signing instance as written in the
issuer field of the certificates that have been signed by this
instance.
This entry MAY optionally contain:

- either: exactly one CA-certificate, cross certificates of
this CA certificate and/or a CRL (and optionally a
delta-CRL) of certificates issued by the CA.

- or: a certificate for CRL-signing (DIR-certificate) and
corresponding CRLs (and optionally delta-CRLs), if
the entry represents a CRLDistributionPoint of an
indirect CRL.

- or: a certificate for OCSP-signing (OCSP-certificate)
- or: a certificate for TSP-signing (TSP-certificate)

For search facilities, the mandatory commonName attribute
MUST contain the same commonName as the
organizationalUnitName attribute.

T2.#4,9,11 [2]
[3]

4 COMMON
NAME

Object class: Person
 Mandatory attributes: commonName (DName attribute)
 Optional attributes: surname
Auxiliary object class: pkiUser
 Optional attributes: userCertificate
Auxiliary object class: pkiUserData:
 Optional attributes: countryName |

serialNumber |
given Name |
title |
postalAttributeSet |
organizationName |
organizationalUnitName |

 organizationalAttributeSet }

This entry corresponds to exactly one end entity certificate.
Different certificates of an end entity are stored in different
entries of the DIT.
The commonName DName -attribute MUST be build
according to the following pattern:
<subject commonName>SER:<cert.serial number>
The optional attributes of this entry MAY contain an arbitrary
subset of the attributes included in the subject DName of the
end entity certificate and serve for search purposes. It is
especially RECOMMENDED to include the serialNumber
attribute, if several users exist with the same commonName
and serialNumber has been used by the CA to distinguish
among them, as recommended by [RFC3039].
When used in this context, businessCategory refers to the
occupation or profession of the user.

T2.#2,7,10

[1] Common PKI Profile: When using this schema, organizationName MUST be unique among all certification authorities of the PKI.
[2] Common PKI Profile: When using this schema, commonName MUST be unique among all CA certificates of a certification authority.

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 17 of 35

2.2 Access Protocol

Basically, only read (reading information at a well-defined entry) and search (searching for an entry with specific attributes) operations will be
performed by Common PKI-conforming clients. The following operations MUST be supported by all Common PKI-compliant servers and clients:

Table 4: Access Operations

OPERATION DESCRIPTION REFERENCES
RFC

NO T
ES

1 bind An LDAP session will always be opened with a bind operation. Since certificates and CRLs are signed
documents, no security measures have to be met when reading or searching the directory. Hence, clients
MUST always request the version 3, ‘anonymous’ session, which is indicated by NULL parameters in the
name and authentication fields. More closely, name contains an empty string in this case whereas
authentication contains the simple choice option filled with an empty octet string. Servers MUST allow
anonymous read and search requests.

RFC4511 4.2

2 unbind Closes or aborts an LDAP session. RFC4511 4.3

3 read a particular end entity
certificate

End entity certificates can be requested by a client by starting a single-level search at the COMMON NAME
entry of the end entity. The DName of this entry can be constructed by the client as follows:

C=<countryName of issuer>,O=<organizationName of issuer>,OU=<commonName of issuer>,
CN=<commonName of subject>,SER=:<cert.serial number>

RFC4511 4.5

4 read a particular CA CA certificates can be requested by a client by starting a single-level search at the ORGANIZATIONAL UNIT
entry of the end entity. The DName of this entry can be constructed by the client as follows:

C=<countryName of issuer>,O=<organizationName of issuer >,OU=<commonName of issuer >

RFC4511 4.5

5 read the certificate of the
issuer of a CA certificate

This certificate is stored at an ORGANIZATION entry, superior to the entry of the issuing (signing) instance.
The certificate can be requested by a client by starting a single-level “search” at that entry. The DName of this
entry can be constructed by the client as follows:

C=<countryName of issuer>,O=<organizationName of issuer >
As this node might contain several certificates, the client must still select the proper one by comparing the
issuer of the CA certificate with the subject DName of the returned certificates.

RFC4511 4.5

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via LDAP Common PKI Part 4 – Page 18 of 35

6 read the CRL (or delta-CRL)
corresponding to an end entity
certificate

CRLs are stored either at an ORGANIZATION entry for all signing instances of a CA (indirect CRL), at
ORGANIZATIONAL UNIT entry for a particular signing instance or at a CRLDistributionPoint, that is
indicated in the certificate that is to be validated.
In the former two cases, the CRL can be obtained by starting a subtree-search at the ORGANIZATION entry.
The DName is as follows:
C=<countryName of issuer>,O=<organizationName of issuer >
In the latter case, a single level search at the CRLDistributionPoint entry (of type ORGANIZATIONAL UNIT)
will return the CRL.

RFC4511 4.5

7 read the CRL (or delta-CRL)
corresponding to a CA
certificate

The CRL can be found by means of a single-level search either at an ORGANIZATION entry or in a
CRLDistributionPoint, indicated in the certificate. DNames are formatted as above.

RFC4511 4.5

8 search for certificates of an
end entity

Using subject DName attributes, a subtree-search can be started either at an ORGANIZATION or at an
ORGANIZATIONAL UNIT entry. The more attribute types are supported by the PkiUserData class, the higher
the chance to locate exactly the certificate entries of the end entity.

RFC4511 4.5

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 19 of 35

3 Directory Access via OCSP

The Online Certificate Status Protocol (OCSP) enables applications to determine the (revocation) state of an identified certificate. OCSP may be
used to satisfy some of the operational requirements of providing more timely revocation information than is possible with CRLs and may also be
used to obtain additional status information. An OCSP client issues a status request to an OCSP responder and suspends acceptance of the certificate
in question until the responder provides a response. This protocol specifies the data that needs to be exchanged between an application checking the
status of a certificate and the server providing that status.

3.1 Protocol Elements

Table 5 and Table 6 specify the OCSP request message. Due to the flexible syntax, OCSP responses can be of various types (Table 7). There is one
basic type of response, BasicOCSPResponse (Table 8), that MUST be supported by all PKIX-conforming clients and responders.

Table 5: OCSPRequest

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 TABLE

NO
TES

1 OCSPRequest ::= SEQUENCE { 4.1.1
2 tbsRequest TBSRequest, The requestor MAY sign the DER-encoding of this

“to be signed” part of the data structure.
 #3 [1]

3 optionalSignature [0] EXPLICIT Signature OPTIONAL } The optional signature of the requestor +- +- #10 [1]
4 TBSRequest ::= SEQUENCE { 4.1.1
5 version [0] EXPLICIT OCSPVersion DEFAULT v1, Version number of the OCSP protocol #9
6 requestorName [1] EXPLICIT GeneralName OPTIONAL, Name of the requestor +- +- RFC5280

4.2.1.7
P1.T8.#2 [1]

7 requestList SEQUENCE OF Request, List of single status requests T6 [2]
8 requestExtensions [2] EXPLICIT Extensions OPTIONAL } OCSPRequest extensions +- ++ RFC5280

4.1
T9,
P1.T9

9 OCSPVersion ::= INTEGER { v1(0) } 4.1.1
10 Signature ::= SEQUENCE { 4.1.1 [1]
11 signatureAlgorithm AlgorithmIdentifier, An identifier of the signature algorithm used by the

requestor to sign the request
 RFC5280

4.1.1.2
P1.T4

12 signature BIT STRING, The signature of the requestor
13 certs [0] EXPLICIT SEQUENCE OF Certificate

 OPTIONAL }
Certificates that are relevant for the verification of the
signature

+- ++ [1]

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 20 of 35

[1] [RFC2560]: The requestor MAY choose to sign the request message, e.g. when the responder requires an authentication of users. In this case, the requestor MUST specify
its name in the requestorName field (#6) and MAY include certificates in the certs field (#13) that help the responder to verify the signature.
Common PKI Profile: If the requestor chooses to sign the request message, requestorName MUST contain a directoryName with the subject DName of the signer’s
certificate. Alternative names MAY additionally be inserted. So that the request can be validated, certs SHOULD contain all certificates of a certificate path, but MUST at
least contain the requestor’s signing certificate.
Responders may choose not to verify the signature, if the OCSP service is publicly available.

[2] Common PKI Profile: the list MUST contain at least one single request.

Table 6: (Single) Request

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 TABLE

NO
TES

1 Request ::= SEQUENCE { 4.1.1
2 reqCert CertID, Uniquely identifies the certificate being requested #4
3 singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL } (Single) Request extensions +- ++ RFC5280

4.1
T9,
P1.T9

4 CertID ::= SEQUENCE { Uniquely identifies the certificate being requested by
identifying the public key (not certificate!) of its
issuer and its serial number.

 4.1.1

5 hashAlgorithm AlgorithmIdentifier, Hash algorithm to build hash values below RFC5280
4.1.1.2

P1.T4 [1]

6 issuerNameHash OCTET STRING, Hash of issuer’s DER-encoded DName, as it occurs
in the certificate being requested

7 issuerKeyHash OCTET STRING, Hash of the DER-encoded public key of the issuer of
the certificate being requested. Calculated over the
public key (excluding tag, length and unused bits in
the BIT STRING representation).

 [2]

8 serialNumber CertificateSerialNumber } Serial number of the certificate being requested RFC5280
4.1.2.2

P1.T2

[1] Common PKI Profile: The hash functions to use for certID are defined in Table 1 of Part 6.
[2] RFC2560: The hash of the public key is included here, so that the issuer can be identified even in the case, when DNames of two different CAs are accidentally identical.

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 21 of 35

Table 7: OCSPResponse

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 TABLE

NO
TES

1 OCSPResponse ::= SEQUENCE { 4.2.1 #4
2 responseStatus OCSPResponseStatus, Processing status of the request
3 responseBytes [0] EXPLICIT ResponseBytes OPTIONAL } Response data is returned here, if the request be

successfully processed
+- ++ #12

4 OCSPResponseStatus ::= ENUMERATED { 4.2.1
5 successful (0), Response has valid confirmation ++ ++
6 malformedRequest (1), Illegal request format, not conforming to the OCSP

syntax
++ ++

7 internalError (2), The OCSP responder reached an inconsistent internal
state. The query should be retried, potentially with
another responder.

++ ++

8 tryLater (3), The OCSP responder is in operational status, but
temporarily unable to return a status.

++ ++

9 Value ‘4’ is not used.
10 sigRequired (5), The server requires the client to sign the request. ++ ++
11 unauthorized (6) } The client is not authorized to query the server. ++ ++
12 ResponseBytes ::= SEQUENCE { 4.2.1
13 responseType OBJECT IDENTIFIER, indicates the type of response [1]
14 response OCTET STRING } DER-encoding of the response data [1]
[1] RFC2560: In this profile, only response type BasicOCSPResponse is defined (Table 8). This response type MUST be supported by all conforming clients and responders.

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 22 of 35

Table 8: BasicOCSPResponse

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 TABLE

NO
TES

1 id-pkix-ocsp OBJECT IDENTIFIER ::= { id-ad-ocsp } ++ ++ 4.2.1
2 id-pkix-ocsp-basic OBJECT IDENTIFIER ::= { id-pkix-ocsp 1 } The OID to be used in conjunction with

BasicOCSPRequest.
++ ++ 4.2.1

3 BasicOCSPResponse ::= SEQUENCE { ++ ++ 4.2.1
4 tbsResponseData ResponseData The responder signs the DER-encoding of this “to be

signed” part of the data structure.
 4.2.1 #8

5 signatureAlgorithm AlgorithmIdentifier, An identifier of the signature algorithm used by the
responder to sign ResponseData

 RFC5280
4.1.1.2

P1.T4

6 signature BIT STRING, The signature of the responder represented as BIT
STRING

 [1]
[2]

7 certs [0] EXPLICIT SEQUENCE OF Certificate
 OPTIONAL }

Certificates that are relevant for the verification of the
signature

+- + RFC5280
4.1.1

P1.T1 [3]

8 ResponseData ::= SEQUENCE { 4.2.1
9 version [0] EXPLICIT Version DEFAULT v1, Version of BasicOCSPResponse RFC5280

4.1.2.1
P1.T2

10 responderID ResponderID, Identifier of the responder #14
11 producedAt GeneralizedTime, Time o f signing the response [4]
12 responses SEQUENCE OF SingleResponse, List of single responses, for all but NOT necessarily

in order of the single requests
 #18

13 responseExtensions [1] EXPLICIT Extensions OPTIONAL } BasicOCSPResponse extensions +- ++ RFC5280
4.1

T9,
P1.T9

14 ResponderID ::= CHOICE { 4.2.1
15 byName [1] EXPLICIT Name, DName of the responder +- ++ RFC5280

4.1.2.4
P1.T5 [5]

16 byKey [2] EXPLICIT KeyHash } Hash of responders public key (see below) +- ++ #17 [5]
17 KeyHash ::= OCTET STRING SHA-1 hash of responders public key (excluding tag,

length and unused bits in the BIT STRING
representation)

 4.2.1 [6]

18 SingleResponse ::= SEQUENCE { A single response 4.2.1
19 certID CertID, Uniquely identifies the queried certificate 4.1.1 T6.#4 [7]
20 certStatus CertStatus, Certificate status #24
21 thisUpdate GeneralizedTime, The time at which the status being indicated was

known to be correct.
 [4]

[8]

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 23 of 35

22 nextUpdate [0] EXPLICIT GeneralizedTime OPTIONAL, The time at or before which more up-to-date
information will be available.

+- ++ [4]
[8]

23 singleExtensions [1] EXPLICIT Extensions OPTIONAL } SingleResponse extensions +-

++ RFC5280
4.1

T9,
P1.T9

24 CertStatus ::= CHOICE { 4.2.1
25 good [0] IMPLICIT NULL, indicates that the certificate IS NOT revoked. ++ ++ [9]
26 revoked [1] IMPLICIT RevokedInfo, indicates that the certificate IS revoked, either

permanently or temporarily (on hold).
++ ++ #28

27 unknown [2] IMPLICIT UnknownInfo } indicates that the responder does not know about the
certificate being requested

++ ++ #31

28 RevokedInfo ::= SEQUENCE { 4.2.1
29 revocationTime GeneralizedTime, time of revocation
30 revocationReason [0] EXPLICIT CRLReason OPTIONAL } reason of revocation +- +- RFC5280

5.3.1
P1.T38

31 UnknownInfo ::= NULL 4.2.1
[1] RFC2560: All definitive response messages (responseStatus=successful) MUST be digitally signed. The key used to sign the response MUST belong to one of the

following:
(a) the CA who issued the certificate(s) in question
(b) a Trusted Responder whose public key is trusted by the responder (and installed directly at the client), affected certificates include the OCSPNocheck extension.
(c) a CA Designated Responder (Authorized Responder) who holds a specially marked certificate issued directly by the CA, indicating in the ExtendedKeyUsage

extension that the responder may issue OCSP responses for that CA.
[DraftOCSPv2]: The above list is extended with the following option:
(d) a key associated with the CA (i.e. a CA's OCSP-signing key)
Common PKI Profile: As described in (d) above, the responder’s certificate MAY be issued for the CA by some other trusted authority. This set-up allows clients to
obtain reliable status information even if the key of the issuing CA has been compromised. This configuration is RECOMMENDED for all Common PKI-compliant CAs.
Clients MUST NOT rely on the authorization rules, i.e. they MUST accept responder certificates issued by any trusted authorities.

[2] RFC2560: If an OCSP responder knows that a particular CA's private key has been compromised, it MAY return the revoked state for all certificates issued by that CA.
Common PKI Profile: Reliable status information can be delivered, when using the setup (d) described in [1]. In such a configuration, OCSP responders SHOULD in
return the actual status, i.e. SHOULD NOT return the revoked state, unless the certificate has been explicitly revoked.

[3] Common PKI Profile: So that the response can be validated, certs SHOULD contain all certificates of a certificate path, but MUST at least contain the responder’s signing
certificate.

[4] Common PKI Profile: Time instances MUST be specified using the format YYYYMMDDhhmmssZ.
[5] Common PKI Profile: As all certificates of the certificate path are included in the response, it is not critical which CHOICE option is used here. If byName is given, it

MUST contain the same DName as the responders subject field.
[6] Remark: If the responder uses the CA public key, this value is identical to the keyIdentifier field of the AuthorityKeyIdentifier extension in the certificate being requested, if

computed according to method a) in P1.T11.[2].
[7] Common PKI Profile: the certID in a SingleResponse MUST be identical to that in the corresponding (single) Request. (T6.#4)

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 24 of 35

[8] RFC2560: The thisUpdate and nextUpdate fields define a recommended validity interval. This interval corresponds to the {thisUpdate, nextUpdate} interval in a CRL, e.g.
if status information has been obtained from a CRL. Responses whose thisUpdate time is later than the local system time SHOULD be considered unreliable. Responses
whose nextUpdate value is earlier than the local system time value SHOULD be considered unreliable. If nextUpdate is absent, the responder indicates that newer
information is available all the time.

[9] RFC2560: ATTENTION! As status information delivered by OCSP may be obtained from CRLs, good does not necessarily mean that the certificate was ever issued or
that the response time lies within the certificate’s validity interval. Additional information regarding the status, such as positive statement of availability or validity, may be
included in response extensions.
Common PKI Profile: This Common PKI-specification defines the private single response extension CertHash that may deliver a positive statement about the availability
of a certificate. Refer to Table 15 for more information.

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 25 of 35

Table 9: An overview of OCSP extensions

SUPPORT REFERENCES # EXTENSION OID SEMANTICS CRITI
CAL GEN PROC RFC2560 TABLE

NO
TES

 RFC 2560 EXTENSIONS
1 Nonce {id-pkix-ocsp 2} extension in OCSPRequest and ResponseData: given by a

client in a request and expected in the response, aims to
prevent replay attacks.

-- +- +- 4.4.1 T10

2 CrlID {id-pkix-ocsp 3} extension in ResponseData: if the responder obtains status
information revoked or onHold from a CRL, the CRL may be
identified here.

-- +- +- 4.4.2 T11

3 AcceptableResponses {id-pkix-ocsp 4} OCSPRequest extension: The client may specify in a request,
which kinds of responses it expects

-- +- +- 4.4.3 T12

4 ArchiveCutoff {id-pkix-ocsp 6} extension in ResponseData extension: a responder MAY
choose to retain revocation information beyond the
certificate’s expiry date. In this case, the responder SHOULD
include the certificate’s cutoff date, which is obtained by
subtracting the retention period from the producedAt time.

-- +

++
(RFC
+-)

4.4.4 T13

5 CRL entry extensions SingleResponse extension: All CRL entry extensions may
occur in single responses.

-- +- +- 4.4.5 P1.T37

6 ServiceLocator {id-pkix-ocsp 7} (Single) Request extension: a client may request the responder
to forward the request to another responder, which is known to
be the authorized responder for the queried certificate.

-- +- +- 4.4.6 T14

 COMMON PKI PRIVATE
EXTENSIONS

7 CertHash (Positive Statement) {1 3 36 8 3 13} SingleResponse extension: the responder may include this
extension in a response to send the hash of the requested
certificate to the requestor. This hash serves as evidence that
the certificate is known to the responder (i.e. it is available in
the queried directory) and will be used as means to provide a
positive statement of availability.

-- +-

++

 T15
P1.T43.#4

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 26 of 35

3.1.1 Standard OCSP Extensions

Table 10: Nonce

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 TABLE

NO
TES

1 id-pkix-ocsp-nonce OBJECT IDENTIFIER ::= {id-pkix-ocsp 2} 4.4.1
2 Nonce ::= ANY +- +- [1]
[1] RFC2560: No syntax is given for this extension value.

Common PKI Profile: Use the ASN.1 type ANY on this place, in order for clients to be able to parse any returned object type here. As supporting this extension by
Common PKI-compliant responders is optional, clients MUST NOT rely on responders returning the nonce.

Table 11: CrlID

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 TABLE

NO
TES

1 id-pkix-ocsp-crl OBJECT IDENTIFIER ::= {id-pkix-ocsp 3} 4.4.2
2 CrlID ::= SEQUENCE { Specifies a CRL which has been used by the

responder to obtain status information
+- +- 4.4.2

3 crlUrl [0] EXPLICIT IA5String OPTIONAL, URL at which the CRL is available +- +-
4 crlNum [1] EXPLICIT INTEGER OPTIONAL, CRL number +- +-
5 crlTime [2] EXPLICIT GeneralizedTime OPTIONAL } time of CRL creation +- +-

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 27 of 35

Table 12: AcceptableResponses

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 TABLE

NO
TES

1 id-pkix-ocsp-basic OBJECT IDENTIFIER ::= {id-pkix-ocsp 1} OID denoting response type BasicOCSPResponse. 4.2.1 Table 8.#2
2 id-pkix-ocsp-response OBJECT IDENTIFIER ::= {id-pkix-ocsp 4} OID to be used with extension AcceptableResponses. 4.4.3
3 AcceptableResponses ::= SEQUENCE OF OBJECT IDENTIFIER +- +- 4.4.3 [1]
[1] RFC2560: Responders and clients MUST be capable of responding/receiving BasicOCSPResponse.

Common PKI Profile: Clients MAY include this extension in the request. If included, the AcceptableResponses MUST contain id-pkix-ocsp-basic. If included in the
request, the responder MUST reply with an BasicOCSPResponse object. The responder MAY reply with an BasicOCSPResponse, even if it does not recognize this
extension.

Table 13: ArchiveCutoff

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 TABLE

NO
TES

1 id-pkix-ocsp-archive-cutoff OBJECT IDENTIFIER ::=
 {id-pkix-ocsp 6}

 4.4.4

2 ArchiveCutoff ::= GeneralizedTime + ++ 4.4.4 [1]
[1] RFC2560: A responder MAY choose to retain revocation information beyond the certificate’s expiry date. In this case, the responder SHOULD include the certificate’s

“cutoff” date, which is obtained as follows: cutoff date = producedAt time - retention period.
Applications would use the cutoff date to contribute to a proof that a digital signature was (or was not) reliable on the date it was produced even if the certificate needed to
validate the signature has long since expired.
Remark: The condition cutoff date > expiry date (which is identical to the condition: producedAt time > expiry date + retention period) indicates the fact, that status
information returned by the OCSP responder is not any more reliable, i.e. status information may have been deleted.
Common PKI Profile: The verification of a certificate at some time beyond its expiry date is desirable for message authentication and especially important for non-
repudiation services. There are three approaches to provide for status information beyond the expiry date:
(a) status information MAY be retained by the OCSP responder and the ArchiveCutoff extension included in the response,
(b) status information MAY be retained by the OCSP responder and a positive statement (“certificate is available and has not been revoked”) included in the response,
(c) a valid OCSP response message MAY be included in the digital signature, as proposed in the ETSI standard ES 201 733, so that clients need not query the responder.
Common PKI-compliant CAs MUST provide one of the above mechanisms to provide status information on certificates issued for authentication and non-repudiation
purposes. Compliant clients MUST support all these mechanisms.

[2] Common PKI Profile: ArchiveCutoff MUST have the format YYYYMMDD000000Z.

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 28 of 35

Table 14: ServiceLocator

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 TABLE

NO
TES

1 id-pkix-ocsp-service-locator OBJECT IDENTIFIER ::=
 {id-pkix-ocsp 7}

 4.4.5

2 ServiceLocator ::= SEQUENCE { +- +- 4.4.5 [1]
3 issuer Name, RFC5280

4.1.2.4
P1.T5

4 locator AuthorityInfoAccess OPTIONAL } RFC5280
4.2.2.1

P1.T23

[1] Common PKI Profile: Compliant certificates always contain directory access information. Hence, clients are able to find the authorized responder for that certificate. This
extension MAY still be supported and included, e.g. if clients within some community are configured to query a well-known responder and support this option.

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 29 of 35

3.1.2 Common PKI Private OCSP Extensions

Table 15: CertHash (Positive Statement)

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 TABLE

NO
TES

1 id-commonpki-at-certHash OBJECT IDENTIFIER ::= {1 3 36 8 3 13}
2 CertHash ::= SEQUENCE { +-

++ [1]

3 hashAlgorithm AlgorithmIdentifier, The identifier of the algorithm that has been used the
hash value below.

 RFC5280
4.1.1.2

P1.T4

4 certificateHash OCTET STRING } A hash over the DER-encoding of the entire PKC or
AC (i.e. NOT a hash over tbsCertificate).

[1] [RFC2560]: The "good" state indicates a positive response to the status inquiry. At a minimum, this positive response indicates that the certificate is not revoked, but does
not necessarily mean that the certificate was ever issued or that the time at which the response was produced is within the certificate’s validity interval. Response extensions
MAY be used to convey additional information on assertions made by the responder regarding the status of the certificate such as positive statement about issuance,
validity, etc.
Common PKI Profile: The responder may include this extension in a response to send the hash of the requested certificate to the responder. This hash is cryptographically
bound to the certificate and serves as evidence that the certificate is known to the responder (i.e. it has been issued and is present in the directory). Hence, this extension is a
means to provide a positive statement of availability as described in T 8.[8]. As explained in T13.[1], clients may rely on this information to be able to validate signatures
after the expiry of the corresponding certificate. Hence, clients MUST support this extension.
If a positive statement of availability is to be delivered, this extension syntax and OID MUST be used.
A further note on security : Including the hash of the queried certificate in the response prevents impersonation attacks of the following scenario:
Mallory manages to get the private key of a CA. The corresponding CA certificate is immediately revoked. Using the stolen CA key, Mallory creates a faked certificate
with the same serial number as an existing one (the original) and containing a new public key. Using the corresponding private key, Mallory signs a message and sends it,
along with the faked certificate, to Alice. Alice succeeds to mathematically verify the signature and wants to check the state of the received certificate by sending its serial
number to the OCSP server. The server returns the answer good, if the original certificate has not been revoked. Having received the response good, Alice thinks that the
(actually faked) certificate is O.K. and accepts the signature. She is unable to detect that the response corresponds to another certificate than what she was asking about.
This threat is apparently not handled by PKIX documents. The security gap can be closed by including either the certificate or a fingerprint of it in the response,
respectively in the positive statement as proposed here. It is crucial that the signature of the responder can be reliably verified. Hence, departing from the practice proposed
by RFC2560, the certificate of the responder SHOULD be issued by some independent the CA, i.e. not by the CA the certificates of which the responder provides
information about. This configuration is described in T8.[1], item d).

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 30 of 35

3.2 Certificate Contents

3.2.1 Queried certificates

[RFC2560]: In order to convey to OCSP clients a well-known point of information access,
CAs SHALL provide the capability to include the AuthorityInfoAccess extension (defined in
[RFC5280], section 4.2.2.1) in certificates that can be checked using OCSP. Alternatively, the
accessLocation for the OCSP provider may be configured locally at the OCSP client. CAs that
support an OCSP service, either hosted locally or provided by an Authorized Responder,
MUST provide for the inclusion of a value for a uniformResourceIndicator (URI)
accessLocation and the OID value id-ad-ocsp for the accessMethod in the AccessDescription
SEQUENCE. The value of the accessLocation field in the subject certificate defines the
transport (e.g. HTTP) used to access the OCSP responder and may contain other transport
dependent information (e.g. a URL).
Common PKI Profile: If status information can be obtained via OCSP for a certificate, the
AuthorityInfoAccess containing an URL for HTTP transport extension MUST be included.

3.2.2 Responder’s certificates

[RFC2560]: a certificate's issuer MUST either sign the OCSP responses itself or it MUST
explicitly designate this authority to another entity. OCSP signing delegation SHALL be
designated by the inclusion of id-kp-OCSPSigning in an extendedKeyUsage certificate
extension included in the OCSP response signer's certificate. This certificate MUST be issued
directly by the CA that issued the certificate in question.

[DraftOCSPv2]: This draft allows another trusted authority to certify a key associated with
the CA as the CA's OCSP-signing key.

Common PKI Profile: As proposed in [DraftOCSPv2], the responder’s certificate MAY be
issued for the CA by some other trusted authority. The responders certificate, Regardless of
whether issued by the CA itself or issued for the CA by some other authority, the responder’s
certificate MUST include the extendedKeyUsage extension with the id-kp-OCSPSigning OID.
As described in 4.2.2.2 of RFC2560, clients MUST involve this extension in the verification
process, when validating an OCSP response.

[RFC2560]: OCSP clients need to know how to check that an authorized responder’s
certificate has not been revoked. CAs may choose to deal with this problem in one of three
ways:
(a) A CA may specify that an OCSP client can trust a responder for the lifetime of the

responder's certificate. The CA does so by including the extension id-pkix-ocsp-nocheck.
(b) A CA may specify how the responder's certificate be checked for revocation. This can be

done using CRLDistributionPoints if the check should be done using CRLs or CRL
Distribution Points, or AuthorityInformationAccess if the check should be done in some
other way. Details for specifying either of these two mechanisms are available in
[RFC5280].

(c) A CA may choose not to specify any method of revocation checking for the responder's
certificate, in which case, it would be up to the OCSP client's local security policy to
decide whether that certificate should be checked for revocation or not.

Common PKI Profile: Responder’s certificates MUST always include directory access

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via OCSP Common PKI Part 4 – Page 31 of 35

information, i.e. use option (b) above.

3.3 Transport over HTTP
There is no specific transport protocol specified in RFCs for OCSP. Similarly, there is no
dedicated “well-known” port reserved for OCSP. Common PKI compliant systems MUST
employ the Hypertext Transfer Protocol (HTTP) [RFC2616] to transport OCSP messages
between clients and a server. If no port number is provided in the corresponding URL, the
commonly used port No. 80 MUST be used. Using HTTP has the advantage that software
components are easy to implement and that transport over firewalls and proxies usually does
not require any special configuration. It is furthermore possible to provide for secure
transmission using Transport Layer Security (TLS) or Secure Socket Layer (SSL). Note that
since all relevant OCSP messages are signed and carry only public information, it is not
indeed necessary to provide for such additional security.

An OCSP request will be sent to the responder by means of the POST method. The request
message MUST include the following lines:

POST <responder URL>
...
Content-Type: application/ocsp-request
Content-Length: ...
<the DER-encoded OCSPRequest object >
...

If the POST-request could be processed, the server MUST return response status 200 (OK)
and MUST include the DER-encoding of the resulting OCSPResponse object in the response
message. No transport encoding (e.g. to base-64 encoding) is to be applied, i.e. messages are
to be transported in unaltered, pure binary form.

Common PKI Part 4: Operational Protocols Version 2.0

Directory Access via FTP and HTTP Common PKI Part 4 – Page 32 of 35

4 Directory Access via FTP and HTTP

The standard access mechanism for Common PKI-compliant directories is LDAP v3, which
provides access to certificates and CRLs including search and matching facilities. This
Common PKI specification is intended to be kept at the “necessary minimum” needed for
interoperability of client and server applications of the PKI. Therefore, the transport of
certificates and CRLs via email is NOT any longer required to be supported (required by
[MTTv2]), whereas the support of FTP and HTTP for the transport as defined in [RFC2585]
is optional (just as in [MTTv2]). This means that Common PKI-compliant directory services
MAY, but need not make certificates and CRLs available for download via FTP and/or HTTP
and respectively that Common PKI-compliant clients MAY but need not be prepared to
obtain them in this way.

If a certificate is made available via FTP or HTTP, the corresponding FTP/HTTP-URI MAY
be included in the SubjectAltNames extension of the certificate. Certificate file names MAY
be built according to one of the fo llowing patterns:

[ftp|http]://<CAdomain>/<IssuerCommonName>/<uniqueCommonName>.<CertSerialNumber>.cer
[ftp|http]://<CAdomain>/<IssuerCommonName>/<commonName>.<DNserialNumber>.<CertSerialNumber>.cer

If a CRL is made available via FTP or HTTP, the corresponding FTP/HTTP-URI MAY be
included in the SubjectAltNames extension of the certificate. CRL file names MAY be built
according to one of the fo llowing patterns:

[ftp|http]://<CAdomain>/<IssuerCommonName>/all.crl

[ftp|http]://<CAdomain>/<IssuerCommonName>/delta.crl (in case of a delta CRL)

Note that the naming of certificates and CRL files corresponds to their DNames in the
Common PKI directory schema.

Common PKI Part 4: Operational Protocols Version 2.0

Time Stamp Protocol (TSP) Common PKI Part 4 – Page 33 of 35

5 Time Stamp Protocol (TSP)

Common PKI–compliant systems MUST apply the protocol defined in [RFC3161] and
further profiled in [ETSI-TSP], when offering or accessing time stamp services.
Cryptographic algorithms, in particular hash algorithms, SHALL be supported according to
the requirements defined in Common PKI Part 6.

Common PKI compliant applications and TSAs MUST transport TSP messages via HTTP.
Using HTTP has the advantage that software components are easy to implement and that
transport over firewalls and proxies usually does not require any special configuration. It is
furthermore possible to provide for secure transmission using Transport Layer Security
(TLS), as proposed in [RFC3161].

A time-stamp request will be sent to the TSA by means of the POST method. The request
message MUST include the following lines:

POST <TSA URL>
...
Content-Type: application/time-stamp-request
Content-Length: ...
<the DER-encoded TimeStampReq object >

...

If the POST-request could be processed, the server MUST return response status 200 (OK)
and MUST include the DER-encoding of the resulting TimeStampResp object in the response
message. No transport encoding (e.g. to base-64 encoding) is to be applied, i.e. messages are
to be transported in unaltered, pure binary form.

No specific method is specified in this version of Common PKI for requestor authentication.
A future version shall consider this issue. RFC3161 proposes TLS and CMS for this purpose.

Common PKI Part 4: Operational Protocols Version 2.0

References Common PKI Part 4 – Page 34 of 35

References

[DraftOCSPv2] Online Certificate Status Protocol, version 2, draft-ietf-pkix-ocspv2-02.txt,
March 2001

[ETSI-TSP] ETSI TS 101 861 v1.6.1: Time Stamping Profile, January 2006

[ISIS] Industrial Signature Interoperability Specification ISIS, Version 1.2,
December 1999, T7 i.Gr., www.t7- isis.de

[MTTv2] MailTrust Version 2, March 1999, TeleTrust Deutschland e.V.,
www.teletrust.de

[RFC1777] Lightweight Directory Access Protocol, RFC 1777, March 1995

[RFC2252] Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions,
RFC 2252, December 1997

[RFC2560] Internet X.509 Public Key Infrastructure - Online Certificate Status
Protocol – OCSP, RFC 2560, June 1999

[RFC2585] Internet X.509 Public Key Infrastructure Operational Protocols: FTP and
HTTP, RFC 2585, May 1999

[RFC2616] Hypertext Transfer Protocol -- HTTP/1.1, June 1999

[RFC3161] Internet X.509 Public Key Infrastructure - Time Stamp Protocol (TSP),
RFC 3161, August 2001

[RFC3281] An Internet Attribute Certificate Profile for Authorization, <draft- ietf-
pkix-ac509prof-09.txt>, 8th June 2001

[RFC3739] Internet X.509 Public Key Infrastructure: Qualified Certificates Profile,
March 2004

[RFC4510] Lightweight Directory Access Protocol (LDAP): Technical Specification
Road Map, June 2006

[RFC4511] Lightweight Directory Access Protocol (LDAP): The Protocol, June 2006

[RFC4512] Lightweight Directory Access Protocol (LDAP): Directory Information
Models, June 2006

[RFC4513] Lightweight Directory Access Protocol (LDAP): Authentication Methods
and Security Mechanisms, June 2006

[RFC4514] Lightweight Directory Access Protocol (LDAP): String Representation of
Distinguished Names, June 2006

[RFC4516] Lightweight Directory Access Protocol (LDAP): Uniform Resource
Locator, June 2006

[RFC4517] Lightweight Directory Access Protocol (LDAP): Syntaxes and Matching
Rules, June 2006

[RFC4519] Lightweight Directory Access Protocol (LDAP): Schema for User
Applications, June 2006

[RFC4522] Lightweight Directory Access Protocol (LDAP): The Binary Encoding
Option, June 2006

[RFC4523] Lightweight Directory Access Protocol (LDAP) Schema Definitions for
X.509 Certificates, June 2006

Common PKI Part 4: Operational Protocols Version 2.0

References Common PKI Part 4 – Page 35 of 35

[RFC5280] Internet X.509 Public Key Infrastructure – Certificate and Certificate
Revocation List (CRL) Profile, May 2008

[SigI-A4] Signature Interoperability Specification – Chapter B3: Zeitstempel,
Version 3.0, März 1999, GISA (BSI)

[X.509:2005] ITU-T X.509: Information technology – Open Systems Interconnection –
The Directory: Public-key and attribute certificate frameworks, 2005

COMMON PKI SPECIFICATIONS
FOR INTEROPERABLE APPLICATIONS

FROM T7 & TELETRUST

 SPECIFICATION

PART 5

CERTIFICATE PATH VALIDATION

VERSION 2.0 – 20 JANUARY 2009

Common PKI Part 5: Certificate Path Validation Version 2.0

Contact Information Common PKI Part 5 – Page 2 of 35

Contact Information

The up-to-date version of the Common PKI specification can be downloaded from
www.common-pki.org or from www.common-pki.de
Please send comments and questions to common-pki@common-pki.org.

Editors of Common PKI specifications:

Hans-Joachim Bickenbach

Jürgen Brauckmann

Alfred Giessler

Tamás Horváth

Hans-Joachim Knobloch

© T7 e.V. and TeleTrusT e.V., 2002-2009

Common PKI Part 5: Certificate Path Validation Version 2.0

Document History Common PKI Part 5 – Page 3 of 35

Document History

VERSION
DATE

CHANGES

1.0.2
19.07.2002

First public edition of Part 5.

1.0.2
11.08.2003

Incorporated all changes from Corrigenda version 1.2

1.1

16.08.2004

Several editorial changes.

1.1

13/10/2008

Incorporated all changes from Corrigenda to ISIS-MTT 1.1

2.0
20/Jan/2009

Name change from ISIS-MTT to Commo n PKI.
Adapted to new versions of the base standards:

- RFC 4510
- RFC 4516
- RFC 4523
- RFC 5280
- X.509:2005

Various corrections and clarifications.
Corrections in handing policy identifiers during the certificate path validation. Editorial changes
in the pseudo-code for closer familiarity with RFC 5280.

Common PKI Part 5: Certificate Path Validation Version 2.0

Table of Contents Common PKI Part 5 – Page 4 of 35

Table of Contents

1 Preface... 5

2 Certificate Path Validation Procedure .. 7

2.1 Building the Certificate Path ..12

2.2 Validating the Certificate Path...18

2.3 Checking the Revocation Status ...26

References... 35

Common PKI Part 5: Certificate Path Validation Version 2.0

Preface Common PKI Part 5 – Page 5 of 35

1 Preface

The purpose of certificate path validation is verifying the binding between an end entity (a
user, an organization or a server) and his/her/its public key. This binding is certified by an
authority that issues a public key certificate (PKC) for the end entity (EE), which is called the
subject of the certificate. The subject is identified in the certificate by a distinguished name
(DN). Alternative names of the subject, such as email address, can additionally be contained
in the certificate. The certificate is authenticated by the signature of the issuing authority over
the certificate’s content.
Other users, wanting to use the public key of an entity (for encryption or for signature
verification), may obtain his/her/its PKC from a public repository or directory. If fetched from
a public directory, the relying party needs to be able to verify whether the public key is indeed
authentic, i.e. it belongs to the intended communication partner. This can be done by verifying
the signature over the entity’s certificate by means of the public key of the issuing authority.
The authenticity of this authority key must however be checked by verifying the PKC of the
authority. This procedure of recursively verifying certificates of issuers of other certificates
can be terminated, when a trusted public key or certificate can be used at a verification step. A
trusted key or certificate can be obtained from a trusted authority using some reliable out-of-
band procedure or mechanism and must be stored securely on the local system. The trusted
public key is called a security anchor or a root key. The chain of certificates up to the trusted
key is called certificate path, whereas the procedure is called certificate path validation.
The Common PKI Specification is intended for hierarchical PKIs, where root keys are issued
by top- level trusted authorities that issue certificates for other certification authorities (CAs).
Such a trusted public key of an authority is usually published in form of a self-signed
certificate, i.e. where the issuer of the certificate is the same identity as the subject and which
is signed by the private key that corresponds to the certified public key. For the sake of
interoperability, Common PKI-compliant authorities MUST publish their public keys in form
of self-signed certificates. In this document, it is always assumed that the certificate path
includes a trus ted self-signed certificate as last element.

For security reasons, some constraints must be checked while validating the certification path.
These constraints are specified in certificate extensions, such as BasicConstraints,
CertificationPolicy, PolicyConstraints etc., and must be considered while validating the
certificate path. Certificates may get revoked before their expiry date. Hence, it is important to
obtain up-to-date information from a trusted server about the revocation status of each
certificate of the path. The most common technique for providing certificate status
information is issuing certification revocation lists (CRLs). Hence, Common PKI-compliant
CAs MUST issue CRLs and publish them in an LDAP directory. Optionally, CAs MAY
provide an on- line OCSP-service. Information about how to access these LDAP- and OCSP-
services is included in the CRLDistributionPoints and respectively in the AuthorityInfoAccess
extensions of all, except root, certificates.
Reliable status information about root certificates cannot be obtained relying on the same
trusted root. Typically, no CRLs are issued for self-signed root certificates, as the CRL should
be signed using the corresponding root key itself. Hence, no valid CRL can be issued after the
root certificate gets revoked. Therefore, some other reliable out-of-band mechanism, such as a
communiqué, shall be used in case of revoking a self-signed root certificate. In the path
validation algorithm, presented in this specification, root certificates are assumed to be
inherently valid. Clients SHOULD offer the possibility to remove trusted root-certificates
from the local system or mark them invalid.

Common PKI Part 5: Certificate Path Validation Version 2.0

Preface Common PKI Part 5 – Page 6 of 35

A major goal of the Common PKI Specification is to tailor the usage of different certificate
extensions in such a manner that an automatic verification of signatures and certificates – i.e.
a verification without the interaction or judgement of the relying person - is always possible.
This is also a prerequisite for automatic verification performed by non-human end ent ities,
like servers. This part of the Common PKI Specification describes an algorithm for
automating the certificate path validation procedure. Conforming applications are not required
to implement exactly this algorithm, but they MUST be functionally equivalent with respect
to the external behaviour, i.e. a compliant implementation of the verification procedure
MUST yield the same result (valid or invalid) as the presented algorithm, if entering the same
certificate(s) and requesting verification for the same time of reference.
The Common PKI Specification is intended to be used in an environment where several root
CAs may exist in a hierarchical certification structure, where the CAs may even follow
different policies. Cross-certificates may build links among different certification domains. To
provide for wide interoperability among CAs and client software, this document specifies an
algorithm for building a certificate path to a trusted root in an environment with multiple root
CAs and cross-certification; as well as an algorithm for validating that certificate path.

The validation of a certificate involves obtaining and validating up-to-date status information
from a directory service. Special attention has been paid throughout the entire specification to
provide client software with information in order to be able to locate directory services and to
obtain certificates, CRLs and on- line status information. Furthermore, the validation of CRLs
and of OCSP-responses has been addressed too.

The certificate path building and validation algorithm has been extended to process end-entity
attribute certificates (AC). So that an automatic verification of such paths is always possible,
some specific extensions used by the validation procedure must be present in conforming ACs
as well. This raises some requirements on the contents of ACs.

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 7 of 35

2 Certificate Path Validation Procedure

In the following we present a procedure for building and validating a certificate path. Conforming applications are not required to implement
exactly this algorithm, but they MUST be functionally equivalent with respect to the external behaviour, i.e. compliant implementations of the
validation procedure MUST be able to build some existing certificate path and yield the same result (“valid”, “invalid”) for this particular path and
the same time of reference.
Certificate path validation is influenced by a number of input policy and naming constraint parameters that are specified by the application
according to the validation policy of the relying party (refer to T1.#6 below). The validation algorithm described here is generic in the sense that it
supports all policy and naming constraints that are supported by the basic path validation algorithm (BPVA) in [RFC5280]. Applications with a
fixed, limited set of policy or naming constraint parameters MAY chose not to implement those parts of the algorithm, which will never be active
due to the specific input parameter settings. Still, the implementation is considered compliant, if it delivers the same results for the limited parameter
set as the generic version. An example is an implementation that never processes naming constraints or one that always inhibits policy mapping.

Many of the data types used in the presented procedure correspond to ASN.1 types, described in Part 1 (Certificate and CRL Profile). These data
types borrow the name of the corresponding ASN.1 data type (e.g. Certificate, Name). They are defined here as object classes that offer methods for
accessing embedded data fields (e.g. GetIssuer()), as usual in object-oriented programming. Some new data types are introduced in Table 1.

Table 1: Common Data Types

DATA TYPE DESCRIPTION RFC NO
TES

1 typedef enum {
 RootCACert;
 SelfIssuedCACert ;
 CACert;
 CrossCACert;
 EndEntityPKC;
 EndEntityAC;
} CertType;

The CertType enumeration type is used to classify certificates.
Self-signed certificates are certificates where the digital signature may be verified by the public
key bound into the certificate. Self-signed root CA certificates are used to convey a public key for
use to begin certification paths. Self-issued certificates are CA certificates in which the issuer and
subject are the same entity. Self-issued certificates are generated to support changes in policy or
for key roll-over operations. Self-issued certificates are not counted, when evaluation path length,
naming and policy constraints during path validation. In other CA certificates the issuer and
subject are different entities. Regular CA certificates describe a trust relationship between two
CAs within one PKI hierarchy. Cross-certificates are typically issued by a CA of one PKI
hierarchy to a CA in another PKI hierarchy to create a trust relation on one direction. End entity
public key certificates are issued to subjects that are not authorized to issue certificates. Attribute
certificates are issued only for end entities.

3.2

2 class CertInfo { This data structure can be seen as the basic item of the local certificate repository. It is used to

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 8 of 35

 CertType certType;
 bool revoked;
 Time revocTime;
 CRLReason revocReason;
 Time statusInfoNextUpdate;
 Certificate cert;
 AttributeCertificate acert;
};

store one PKC or AC and corresponding information. The certType member makes searching for
specific certificate types easier. The revoked flag is set if the certificate has been revoked.
If the certificate has been revoked, revocTime contains the time of the revocation, otherwise the
date in validity.notAfter. If the certificate has been revoked and the reason for that is known,
revocReason contains the reason of the revocation, otherwise the value ‘unspecified’.
statusInfoNextUpdate is initialized to the date in the validity.notBefore field of the certificate and
contains the date of the most recent on-line status check respectively the date when CRL
information still can be considered as valid, i.e. the date in the nextUpdate field, minus 1 second,
of the most recently downloaded CRL.
Actual implementations may reduce or extend this information.

3 typedef vector<CertInfo> CertInfoList; The CertInfoList type is an ordered list of CertInfo objects. This data structure models the local
certificate depository too.

4 typedef enum {
 certSigning,
 crlSigning,
 ocspSigning,
 timeStamping,
 nonRepudiation,
 dataOrKeyEncryption,
 dataAuthentication
} KeyPurpose;

The KeyPurpose enumeration type identifies the key usage options that are relevant for the
Common PKI Specification. The usage of a key pair resp. of the corresponding PKC is
constrained as indicated in the BasicConstrains, the KeyUsage and the ExtendedKeyUsage
extensions. Note that a PKC may possibly be authorized for more than one of the purposes, e.g. a
CA certificate may be used to sign certificates and CRLs as well.

5 typedef vector<CertPolicyId> PolicyList; The PolicyList type contains a list of policy OIDs.
6 class PathConstraints {

 PolicyList userInitialPolicySet,
 bool initialExplicitPolicy,
 bool initialAnyPolicyInhibit,
 bool initialPolicyMappingInhibit,
 GeneralNames initialPermittedSubtrees,
 GeneralNames initialExludedSubtrees
};

The PathConstraints data structure conveys input parameters from the relying application to the
basic path validation algorithm (BPVA). These parameters contain policy constraints or naming
constraints that have to be verified during path validation.
In particular:
userInitialPolicySet contains a set of initial policy identifiers naming the policies that are
acceptable to the relying party or application. The special policy value anyPolicy indicates that
the relying party is not concerned about certificate policy and accepts any policy. The set must
not be empty. The default value is a set with the single value anyPolicy.
initialExplicitPolicy indicates if the relying party requires the path having a valid policy explicitly
declared by CAs in the certificates. The default value is false, i.e. the relying does not require
having an explicitly declared valid policy. Still, a CA in the hierarchy may enforce explicit policy
declaration by including the PolicyConstraints extension and properly setting the
requireExplicitPolicy variable.
initialAnyPolicyInhibit indicates whether the relying party accepts the policy OID anyPolicy if it
is included in a certificate. The default value is false, i.e. anyPolicy is accepted by the relying
party as declared policy. Still, a CA in the hierarchy may inhibit processing anyPolicy by
including the InhibitAnyPolicy extension.
initialPolicyMappingInhibit indicates whether the relying accepts policy mapping. The default

6.1.1

(c)

(f)

(g)

(e)

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 9 of 35

value is false, i.e. the relying party allows policy mapping. Still, a CA in the hierarchy may
inhibit policy mapping by including the PolicyConstraints extension and properly setting the
inhibitPolicyMapping variable.
initialPermittedSubtrees indicates for each name type a set of subtrees within which all subject
and subjectAltNames names in all certificates in the path must fall. The default value is an empty
GeneralNames object, indicating that the relying party is not concerned about such name
constraints. CAs may further restrict the constraints by including the NameConstraints extension
and properly setting the permittedSubtrees variable.
initialExcludedSubtrees indicates for each name type a set of subtrees within which no subject
and subjectAltNames names in the certificates in the path may fall. The default value is an empty
GeneralNames object, indicating that the relying party is not concerned about such name
constraints. CAs may further restrict the constraints by including the NameConstraints extension
and properly setting the excludedSubtrees variable.

(h)

(i)

7 typedef IA5String LdapUrl; An URL for accessing a directory over LDAP. As described in [RFC4516], the URL format does
not only contain a server address, but parameters for the LDAP-read or search operation.

8 typedef IA5String OcspUrl; An URL for accessing the OCSP-service of a directory. The standard transport mechanism for
OCSP-messages is HTTP.

9 class CrlInfo {
 CertificateList crl;
};

The CrlInfo structure contains all information about a CRL.
For the simplicity of the algorithm description, CRL segmentation is not considered in this
document and CrlInfo contains merely a CRL object. We only note here that CrlInfo should
actually be able to contain different segments of a CRL. Different segments of the same CRLs
can be identified by the IssuingDistributionPoint CRL extension.

10 typedef vector<CrlInfo> CrlInfoList; The CrlInfoList type is an ordered list of CrlInfo objects.

The validation procedure is divided into several subroutines that cover well-defined sub-tasks to be performed – possibly many times – during the
validation. The procedure, respectively its subroutines, is presented as pseudo-program-code, using a C++-like syntax and semantics. The main
entry point of the procedure is ValidateCertificate() (see Table 2). This function expects the ‘to be verified’ EE certificate, a list of further
certificates (all of, some of or more than those in a path to a root trusted by the signing/decrypting party), a set of policies accepted by the relying
party or application, and a reference point in time, at which validity is to be investigated. The function returns true in case of success and false if
path building or validation fails. More distinguishing answers and error messages about the performed verification steps and about the exact reasons
of failure should be given by applications. Client applications are especially encouraged to perform as many steps of the procedure as possible and
return a list of failed actions. The description of the behaviour on failure is not subject of the current version of the Common PKI Specification.

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 10 of 35

Table 2: ValidateCertificate()
PSEUDO -CODE COMMENTS RFC NO

TES
1 bool ValidateCertificate(

 CertInfo in tbvCert,
 CertInfoList in tbvCerts,
 KeyPurpose in intendedKeyUsage,
 Time in refTime,
 PolicyConstraints in initialPolicySet,
 CertInfoList inout trustedCerts,
 CrlInfoList inout trustedCrls)
{

This is the main entry point of the certificate path validation algorithm.
The ‘to be verified’ target certificate or attribute certificate is passed in tbvCert.
tbvCerts may contain zero or more certificates – other than the ‘to be verified’
certificate – of a path to some root certificate. Most commonly, tbvCerts contains
certificates trusted by the signing/decrypting party, but not necessarily trusted by
the relying party.
The required usage of the certified key is indicated in intendedKeyUsage. In case of
an attribute certificate, this parameter is ignored by the procedure.
The point in time, to which status information should be obtained, is passed in
refTime. It may be the current time (typical for mail authentication, encryption) or
some point in the past (typical for non-repudiation service).
pathConstraints conveys input parameters from the relying application to the basic
path validation algorithm (BPVA). These parameters contain policy constraints or
naming constraints that have to be verified during path validation.
trustedCerts MUST contain at least one trusted self-signed root certificate and may
contain further CA and EE certificates, all of which having a path to one of those
trusted root certificates. These certificates are typically stored on the local system to
accelerate the validation procedure. trustedCerts may further contain cross-
certificates (issued by a trusted CA to some other CA), each having a valid path to
one of those root certificates.
trustedCrls may contain complete CRLs that have previously been downloaded,
successfully verified and stored in the local database. This storage allows a reuse of
complete CRLs in later validations without needing to access the directory service.
trustedCrls may furthermore contain complete CRLs that are locally maintained,
e.g. by regularly downloading delta-CRLs from an LDAP-Server or by obtaining
the list by some out-of-band mechanism (e.g. unsigned CRLs of root certificates).
This function returns true if the certificate has been successfully verified, including
mathematical verification, constraint and status checking; respectively false if
mathematical check failed, some constraint is not met, a relevant certificate cannot
be obtained or has been revoked, status information cannot been obtained or no
certification path could have been built to any of the trusted root certif icates.
trustedCerts will be updated with the certificates of a successfully validated path to
allow local storage and reuse of validated certificates and corresponding status
information. trustedCrls will be similarly updated with verified CRLs.

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 11 of 35

2 if(tbvCert.KeyUsagePresent()==true)
 {
 if(CheckKeyUsage(tbvCert, intendedKeyUsage)==false)
 return false;
 }

It is practical to check at this early stage whether the certificate is authorized for the
intended key usage indicated in parameter intendedKeyUsage. Permitted key uses
are indicated in the KeyUsage and the ExtendedKeyUsage extensions of tbvCert. If
the intended usage is not permitted, ValidateCertificate() returns false.
Common PKI Profile: Note that the KeyUsage extension MUST be present in all
PKCs and is always critical (P1.T12.[1]).

3 CertInfoList tbvPath, trustedPath;
 tbvPath.Clear();
 if(BuildAndValidateCertPath(tbvCert,
 tbvCerts,
 refTime,
 pathConstraints,
 trustedCerts,
 trustedCrls,
 tbvPath,
 trustedPath)==false)
 return false;

Compose and validate a certificate path using function BuildAndVerifyCertPath
(Table 3).
Return false if no valid path could be built.

4 trustedCerts.UpdateCertList(trustedPath);

If verification succeeds, trustedCerts will be updated with the certificates of a
successfully verified path to allow their reuse: certificates of trustedPath not yet
present in trustedCerts will be inserted in the list, status information of certificates
readily present in the list will be updated to contain the most recent date of checking
the status.

5 return true;
}

Validation succeeded, return true

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 12 of 35

2.1 Building the Certificate Path

A PKI can be illustrated by a directed graph: each vertex represents a key-pair of an entity (i.e. a CAs or an EE) whereas an edge c(A,B) from A to B
represents a certificate, signed by A and containing the public key B. Self-signed root certificates are represented by an edge c(A,A) returning to the
same vertex. The certificate path validation algorithm described in this document is intended to be used in hierarchical PKIs with possibly many
multiple root CAs and root keys. A hierarchical PKI can be depicted as a tree: each vertex A (including the root R) can be reached along a directed
path from the root R, but the graph normally contains no cycles, except edges e(R,R), which belong to self-signed root certificates. Multiple edges
(i.e. certificates) leading from some A to some B are similarly allowed. If multiple root keys exist in parallel, the graph of the PKI consists of PKI-
domains, having no “ordinary” connections. Cross-certificates may build bridges among those islands and enable a relying party to validate a
certificate even then, when the certificate holder and the relying party (the verifier) do not share a common most trusted root. See an example of
such a PKI in Figure 1. Cross certificate are denoted by cc(X,Y).
The algorithm presented here is constructed to handle cross-certificates and to be able to build a path – possibly via cross-certificates – from the
certificate holder entity to any specific root key, if such a path exist in the graph. The presented algorithms can cope with cycles in the graph, which
should be avoided in the praxis for performance reasons. For example, not only edges cc(B2,A), cc(A,C) and cc(C,B2) built a cycle in Figure 1, but
readily the edges cc(B2,A) and cc(A,B2).
Building a certificate path to a trusted root is not straightforward and implies searching the PKI graph. The presented algorithm follows a “depth-
first” searching strategy, i.e. explores a path “in entire depth” before trying alternative paths “in breadth”. The Depth-First Path Building Algorithm
(DPBA) is sketched in concise form below:

1) Start from the “to be verified” certificate c(A2,A1), signed by key A2 of some authority and containing the key A1 of an end entity and enter
the following steps with parameter i=1,

2) if Ai+1=Ai, that is if a root-certificate has been found and:
a) the root certificate is trusted, terminate the search. The certificates c(Ai+1,Ai), i=1…n comprise the certificate path.
b) the root certificate is NOT trusted, track back to the most recently visited “open” vertex Ai, i.e. one with the largest possible i and

with further certificates to chose from at step 3).
3) if Ai+1?Ai, that is the selected certificate is not a root certificate, select some certificate c(Ai+1,Ai) signed by some authority key Ai+1 from the

set of all available certificates (CA- and cross-certificates) containing Ai and proceeds with parameter i+1 to step 2). At this point the
algorithm recurs and extends thus the path towards a root.

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 13 of 35

The decision at step 3), which certificate (i.e. edge) to explore next, is the second relevant characteristics of the searching strategy. In the algorithm
presented below, we employ the following selection criterion:

a) First choose certificates present in the local database. According to our assumptions, the local database contains only certificates that are part
of some path to a root trusted by the user that have been validated at least once. The “reuse” of readily explored paths may radically reduce
the efforts while building a path (or a segment of it) to the same root.

b) Second choose certificates delivered by the certificate user. Besides the EE certificate used for signature or encryption, the certificate user
may deliver other certificates of a certificate path he has used to validate the certificate. Typically, these certificates comprise the “official”
certificate path of the certificate owner, containing only “regular” CA-certificates (i.e. no cross-certificates).

c) If none of the previously mentioned certificates leads to a trusted root, fetch other certificates of the entity from the directory. Directories
must contain all cross-certificates issued for a CA key.

Due to the above search principles, the algorithm typically explores the “official” path to the root trusted by the certificate owner EE. Then, if this
root happens not to be trusted by the verifying party, the algorithm explores alternative paths – possibly via cross-certificates – at higher order keys
(i.e. keys of authorities higher in the hierarchy) before exploring alternative paths at lower order keys. This matches the common practice that they
are typically the higher order, and especially the root, authorities who issue cross-certificates among each other.
Say, user I wants to let the algorithm validate certificate c(F,K) of user K. User I trusts only the key B1, e.g. this is the key stored on his smartcard.
If the local database contains the certificates c(B1,B1) and cc(B1,B2), the search algorithm first finds the path (K,G,C,B2,B1), then path
(K,G,C,A,B2,B1) and finally (K,G,F,B2,B1).
We emphasize that actual implementations are NOT mandated to implement any specific searching strategy and selection criterion, but MUST be
able to find some appropriate path to a trusted root, if such a path exist. Note furthermore that it is not necessary to maintain a local database.
Beyond giving the theoretical framework, we describe here just one, supposedly efficient, variant of the numerous possible implementations. The
certificate path can however be built and verified, even if the local database is empty (up to one trusted root certificate).

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 14 of 35

KI1

GE2

JI2

E1 F

B1

c(B1,B1)

A

c(A,A)

C

c(C,C)

H

B2

c(B2,B2)

cc(B1,B2)

c(B2,E)

cc(A,C)

cc
(B

2,A
)

cc(B2,C)

c(F
,K

)

cc(F,G)

c(C
,G

)

keys of root authority B

keys of authority E

keys of end entity H

D

c(D,D)

root key
trusted by
end entity I

PKI domain of
root authority C

PKI domain of
root authority D

"bridge" authority A

Figure 1: An example of a PKI with multiple root CAs and cross-certification

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 15 of 35

Table 3: BuildAndValidateCertPath()

PSEUDO -CODE COMMENTS REF.
TO
DPBA

NO
TES

1 bool BuildAndValidateCertPath(
 CertInfo in tbvCert,
 CertInfoList in tbvCerts,
 Time in refTime,
 PathConstraints in pathConstraints,
 CertInfoList in trustedCerts,
 CrlInfoList in trustedCrls,
 CertInfoList in tbvPath,
 CertInfoList out trustedPath)
{

This function performs “depth-first” search in the PKI graph and builds a certificate
path to a root certificate, as described at the beginning of this chapter. This function
is recursively called during the search procedure and each time it is called, it
performs steps 2) and 3) of the DPBA.
The ‘to be verified’ certificate (PKC or AC) is passed in tbvCert to the function.
tbvPath carries readily built segments of the path through recursive calls. The other
parameters have the same semantics as in Table 2.
In case of success, the function returns true and the constructed and verified path in
trustedPath . The structure of the path is:

• for all i in {1,n-1}, the subject of certificate i is the issuer of certificate i+1,
• certificate i=1 is a trusted self-signed root certificate,
• certificate i=n is the ‘to be verified’ target certificate

If no path could be built or validation failed, the function returns false.

2 if(tbvPath.FindCert(tbvCert))
 return false;

If tbvCert is readily present in tbvPath, it indicates having run into a cycle in the
PKI graph. To avoid infinite looping, backtracking is initiated by returning false.

3 tbvPath.InsertAtFront(tbvCert); The tbvCert is inserted at the front of the path, i.e. as item with index 1.
4 if(tbvCert.GetCertType() == RootCACert)

 {
If the certificate just reached is a self-signed root certificate, the search terminates. 2)

5 if(trustedCert.findCert(tbvCert)
 {
 if(ValidateCertPath(tbvPath
 tbvCerts,
 refTime,
 pathConstraints,
 trustedCerts,
 trustedCrls)==false)
 return false;
 trustedCertPath = tbvPath;
 return true;
 }

If the root certificate is trusted by the user, i.e. it occurs in trustedCerts, the function
calls ValidateCertPath() to validate the path (Table 4). If the path cannot be
validated for some reason (e.g. some certificate expired, policy constraints cannot
be met or directory services were not available), backtracking is initiated by
returning false. In this way, the algorithm is able to track back to some “open”
vertex in the search graph and explore an alternative path. If validation succeeds,
the path is copied to the output variable trustedCertPath and true is returned.

2)a)

6 else
 return false;
 }

If the root certificate cannot be found among those trusted by the user, backtracking
is initiated by returning false.

2)b)

7 if(tbvCert.AuthKeyIdIsPresent() == false)
 return false;
 if(tbvCert.AuthKeyIdContainsKeyId() == false)
 return false;
 OCTET_STRING authorityKeyId;

As the certificate just added to the path is not a root certificate, the algorithm is now
about to build the path further. To be able to find all certificates containing the key
used to sign tbvCert, (i.e. a signer or authority certificate to tbvCert), the authority

3)

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 16 of 35

 authorityKeyId = tbvCert.GetKeyIdFromAuthKeyId();

key identifier will be retrieved from the keyIdentifier field of the
AuthorityKeyIdentifier extension of tbvCert.
Common PKI Profile: Note that the AuthorityKeyIdentifier extension MUST
always be present. (P1.T11.[1]) The keyIdentifier field MUST always be present
and MUST be include in the SubjectKeyIdentifier of the corresponding CA
certificate. The authorityCertIssuer and authorityCertSerialNumber fields MAY
also be present in AuthorityKeyIdentifier. (P1.T11.[1])
Note: An application may prefer to follow exactly the “official” path of tbvCert, if it
is indicated in the authorityCertIssuer and authorityCertSerialNumber fields. For
simplicity, we avoid here describing this option.

8 CertInfoList issuerCerts;
 CertInfo issuercert;
 if(trustedCerts.findCertWithSubjectKeyId(authorityKeyId,
 issuerCerts))
 {
 for(int i=0; i<issuerCerts,size(); i++)
 {
 issuerCert = issuerCerts.GetItem(i);
 if(BuildAndValidateCertPath(
 issuerCert,
 tbvCerts, refTime, pathConstraints,
 trustedCerts, trustedCrls,
 tbvPath, trustedPath)==true)
 return true;
 }
 }

The variable issuerCerts collects all certificates (root-CA-, CA - and cross-
certificates) of the issuer of tbvCert, which contain the public key used to sign
tbvCert.
First, the locally available certificates of trustedCerts will be scanned to find
appropriate certificates. For each appropriate certificate, it will be attempted by
recursively calling BuildAndValidateCertPath() to build and validate a path to a
trusted root. If a trusted path can be built, the function returns true. If not, the
algorithm proceeds to the next authority certificate in issuerCerts or, if none of
them led to success, to step #9.
Common PKI Profile: The SubjectKeyIdentifier MUST always be present in CA
certificates and MUST have the same value as the keyIdentifier in
AuthorityKeyIdentifier extension of the issued certificates.

3)a)

9 if(tbvCerts.findCertWithSubjectKeyId(authorityKeyId,
 issuerCerts))
 {
 for(int i=0; i<issuerCerts,size(); i++)
 {
 issuerCert = issuerCerts.GetItem(i);
 if(BuildAndValidateCertPath(
 issuerCert,
 tbvCerts, refTime, pathConstraints,
 trustedCerts, trustedCrls,
 tbvPath, trustedPath)==true)
 return true;
 }
 }

If step #8 failed, proper authority certificates will be searched in the list tbvCerts,
trusted by the decrypting/signing party. For each proper certificate, it will be
attempted by recursively calling BuildAndValidateCertPath() to build and validate
a path to a trusted root. If a trusted path can be built, the function returns true. If
not, the algorithm proceeds to the next authority certificate in issuerCerts or
respectively to step #10.

3)b)

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 17 of 35

10 CertInfoList downloadedCerts;
 if(<using URLs in alt.names to locate authority certs>)
 {
 LdapUrl authCertUrl;
 if(tbvCert.GetCertType() != EndEntityAC)
 {
 if(tbvCert.IssuerAltNamesIsPresent() &&
 tbvCert.IssuerAltNamesContainsLdapUrl())
 {
 authCertUrl =
 tbvCert.getFirstLdapUrlFromIssuerAltNames();
 }
 }
 else
 {
 authCertUrl = tbvCert.getFirstLdapUrlFromIssuer();
 }
 if(authCertUrl.IsEmpty())
 return false;
 if(RequestCaAndCrossCertsViaLdap(authCertUrl,
 downloadedCerts)==false)
 return false;
 }
 else
 {
 downloadedCerts = <use some alternative method to download
 certs of the issuing authority >
 }

If step #9 failed, it will be attempted to download certificates of the issuing
authority (Root-CA, CA- and cross-certificates) from the directory to the
downloadedCerts variable. The application MAY use some alternative method to
locate and obtain those authority certificates.
Common PKI Profile: The LDAP-URL pointing to the CA certificate SHOULD
be included in the IssuerAltNames extension of PKCs and resp. in the issuer field of
ACs.
Further notes on the storage of cross-certificates:
Whereas CA-certificate are usually stored in a caCertificate attribute at the
directory entry of the authority entity, cross-certificates should be found in a
crossCertificatePair attribute.
According to [X.509:2005], cross-certificates MUST occur in the issuedToThisCA
fields of crossCertificatePair attributes in the directory entry of the certificate
owner, i.e. the subject CA. (P4.T1.[21]) Additionally, the same certificates MAY be
published in the issuedByThisCA fields of CrossCertificatePair attributes in the
directory entry of the trusted, issuing CA. Applications may achieve better
performance, if collecting all ‘issuedByThisCA’ cross-certificates at once from the
directory entry of the CA they trust and storing them locally.

11 if(downloadedCerts.findCertWithSubjectKeyId(authorityKeyId,
 issuerCerts))
 {
 for(int i=0; i<issuerCerts,size(); i++)
 {
 issuerCert = issuerCerts.GetItem(i);
 if(BuildAndValidateCertPath(
 issuerCert,
, tbvCerts, refTime, pathConstraints,
 trustedCerts, trustedCrls,
 tbvPath, trustedPath)==true)
 return true;
 }
 }

Proper certificates of the authority, i.e. those with the right key identifier, will be
selected in issuerCerts.
For each proper authority certificate, it will be attempted by recursively calling
BuildAndValidateCertPath() to build and validate a path to a trusted root. If a
trusted path can be built, the function returns true. If not, the algorithm proceeds to
the next authority certificate in issuerCerts or respectively to step #10.

3)c)

12 return false;
}

No trusted path could be built from any authority certificate, return false;

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 18 of 35

2.2 Validating the Certificate Path

The following algorithm is compatible with the ‘Basic Path Validation Algorithm’, briefly BPVA, presented in Section 6.1 of RFC 5280. Some
minor modifications (corrections and enhancements) have been applied to BPVA, which are conspicuously indicated by the words ‘Common PKI
Profile ’. The algorithm assumes that certificates do not use subject or unique identifier fields or private critical extensions, as recommended in
[RFC5280] and as strictly enforced by Common PKI. However, if these components appear in certificates, they MUST be processed. Finally, policy
qualifiers are also neglected for the sake of clarity and simplicity.

Table 4: ValidateCertPath()

PSEUDO -CODE COMMENTS RFC NO
TES

 BASIC PATH VALIDATION 6.1.1
1 bool ValidateCertPath(CertInfoList in tbvPath,

 CertInfoList in tbvCerts,
 Time in refTime,
 KeyPurpose in intendedKeyUsage,
 PathConstraints in pathConstraints,
 CertInfoList inout trustedCerts,
 CrlInfoList inout trustedCrls)
{
 int n = tbvPath.size();

This function performs basic certificate path validation.
tbPath is built by BuildAndValidateCertPath() and contains the n certificates of a
path to a trusted root as follows:

• for all i in {1,n-1}, the subject of certificate i is the issuer of certificate i+1,
• certificate i=1 is a trusted self-signed root certificate,
• certificate i=n is the ‘to be verified’ target certificate

The other function parameters have the same meaning and constraints as those of
BuildAndValidatePath() in Table 3. tbvCerts may contain further certificates that
are only used in validating ternary signed objects, like CRLs.
This function returns true if the certificate could be successfully validated,
including its digital signature verification and checking constraints; respectively
false, if its digital signature verification failed or some constraints cannot be met.

6.1.1
(a),
(b),
(d),
(c),
(h),
(i),

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 19 of 35

 INITIALIZATION 6.1.2
2 PolicyList validPolicySet = { anyPolicy };

A set of certificate policy identifiers comprising the policies recognized by the CAs
along the certificate path together with policies deemed equivalent through policy
mapping. validPolicySet is initialized with a single policy item anyPolicy,
indicating that no specific policy has been found yet which applies for the path. At
the end of basic path validation, the set will either contain a number of valid policy
OIDs or will be empty, if no valid policies were found. At the end of path
validation, the valid policy set will be matched against the policies accepted by the
relying party (i.e. against userInitialPolicySet).
Common PKI Profile: For the sake of simplicity, policy qualifiers – which are
only carried along, but not evaluated in BPVA – are ignored. Furthermore, the data
structure holding valid policies is a set of policy OIDs rather than a tree of complex
data objects. Still, the present algorithm is functionally equivalent with the BPVA
in [RFC5280]. The simplifications lead to a more transparent algorithm design as
well as to less error-prone implementations.

6.1.2
(a)

3 GeneralNames permittedSubtrees =
 pathConstraints.initialPermittedSubtrees;

permittedSubtrees contains a set of root names defining a set of subtrees within
which all subject and subjectAltNames names in subsequent certificates in the
certification path MUST fall. The list is initialized with subtrees accepted by the
relying party. Applications conforming to this profile MUST be able to process
name constraints that are imposed on the directoryName name form and SHOULD
be able to process name constraints that are imposed on the rfc822Name,
uniformResourceIdentifier, dNSName , and iPAddress name forms.

For the syntax and semantics of name values refer to Section 4.2.1.10 of
[RFC5280].

6.1.2
(b)

4 GeneralNames excludedSubtrees =
 pathConstraints.initialExcludedSubtrees;

excludedSubtrees contains a set of root names defining a set of subtrees within
which no subject or subjectAltNames name in subsequent certificates in the
certification path may fall. The list is initialized with subtrees refused by the
relying party.
Only the name forms listed under #2 need to be supported.

6.1.2
(c)

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 20 of 35

5 int explicitPolicy =
 pathConstraints.initialExplicitPolicy ? 0 : n+1;

The counter explicitPolicy indicates the number of certificates at the current and
lower levels in the path that may have no valid policy explicitly declared by the
CAs. If zero, an explicit valid policy is needed in the certificates at this and lower
levels. Once set, this variable may be decreased, but may not be increased. (That is,
if a CA in the path requires an explicit policy, a later certificate cannot remove this
requirement.)
If the relying party requires an explicit policy, the initial value is 0. Otherwise the
initial value is n+1, which indicates that no explicit policy is required, unless a CA
lower in the hierarchy enforces this by means of including the PolicyConstraints
extension and properly setting the requireExplicitPolicy variable.

6.1.2
(d)

6 int inhibitAnyPolicy =
 pathConstraints.initialAnyPolicyInhibit ? 0 : n+1;

The counter inhibitAnyPolicy indicates the number of certificates at the current and
lower levels in the path that may have anyPolicy . If zero, anyPolicy is not allowed
in the certificates at this and lower levels. Once set, this variable may be decreased,
but may not be increased. (That is, if a CA in the path inhibits anyPolicy, a later
certificate cannot remove this requirement.)
If the relying party inhibits anyPolicy, the initial value is 0. Otherwise the initial
value is n+1, which indicates accepting anyPolicy along the path, as long as one
CA lower in the hierarchy does not prohibit it by means of including the
InhibitAnyPolicy extension.

6.1.2
(e)

7 int policyMapping =
 pathConstraints.initialPolicyMappingInhibit ? 0 : n+1;

The counter policyMapping indicates the number of certificates at the current and
lower levels in the path at which policy mapping may be applied. If zero, policy
mapping is not allowed in the certificates at this and lower levels. Once set, this
variable may be decreased, but may not be increased. (That is, if a certificate in the
path prohibits policy mapping, a later certificate cannot remove this requirement.)
If the relying party inhibits policy mapping, the initial value is 0. Otherwise the
initial value is n+1, which indicates that policy mapping is allowed along the path,
as long as one CA lower in the hierarchy does not prohibit it by means of including
the PolicyConstraints extension and properly setting the inhibitPolicyMapping
variable.

6.1.2
(f)

8 int maxPathLength = n; maxPathLength integer is initialized to n, is decremented for each non-self-issued
certificate in the path, and may be reduced to the value in the pathLenConstraint
field within the BasicConstraints extension of a CA certificate.

6.1.2
(k)

 BASIC CERTIFICATE PROCESSING 6.1.3
9 for(int i=1; i<=n; i++)

 {
This for cycle runs through all certificates of the path, starting at the trusted root
certificate and ending at the end-entity certificate.

10 CertInfo &tbvCert = certPath.GetItem(i); tbvCert is just a reference (or alias) to the ith item of the path, which is the ‘to be
verified’ certificate at this step.

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 21 of 35

11 CertInfo &issCert;
 if(i>1)
 issCert = certPath.GetItem(i-1);
 else
 issCert = certPath.GetItem(i);

issCert is just a reference (or alias) to the certificate of the issuer of tbvCert. It can
be a CA-, a root-CA- or a cross-certificate. issCert contains all parameters of the
verifying key in step i: public key, public key algorithm, public key parameters,
issuer name.

6.1.2
(g...j)
6.1.4
(c...f)

12 if(VerifySignature(tbvCert,
 issCert.GetPublicKeyInfo())==false)
 return false;

Verify signature over tbvCert using public key and signature algorithm of the
issuing CA, return false if fails.

6.1.3
(a)(1)

13 if((refTime < tbvCert.GetValidityNotBefore()) or
 (refTime > tbvCert.GetValidityNotAfter()))
 return false;

Check whether refTime lies within the validity period. 6.1.3
(a)(2)

14 if(CheckRevocationStatus(tbvCert,
 tbvCerts,
 refTime,
 pathConstraints,
 trustedCerts,
 trustedCrls)==false)
 return false;

Check whether the certificate has been revoked before refTime and is not currently
on hold status that commenced before refTime. This may be determined by
obtaining a CRL or requesting online status checking. If a sufficiently recent CRL
or sufficiently recent status information is locally available, i.e. if the most recent
time the status is known to be valid lies at or after refTime , the local information
may be applied.

6.1.3
(a)(3)

15 if(tbvCert.GetIssuer() != issCert.GetSubject())
 return false;

Verify that certificates correctly chain, i.e. the issuer of tbvCert is the subject of
issCert.

6.1.3
(a)(4)

16 bool isSelfIssuedIntermediate =
 (tbvCert.GetCertType()==SelfIssuedCACert) and (i<n);
 if(not(isSelfIssuedIntermediate))
 {
 if(permittedSubtrees.containDName(
 tbvCert.GetSubject())==false)
 return false;
 if(permittedSubtrees.containAllGeneralNames,
 tbvCert.GetSubjectAltNames())==false)
 return false;

This and the following steps are skipped, if certificate i is a self-issued intermediate
certificate: Verify that the subject name and each alternative name in the
subjectAltNames extension (critical or non-critical) are consistent with the
permittedSubtrees variable.
Common PKI Profile: Applications conforming to this profile MUST be able to
process name constraints that are imposed on directoryName , rfc822Name ,
uniformResourceIdentifier, dNSName , and iPAddress name forms , independently of
the criticality of the subjectAltName extension. Restrictions apply only when the
specified name form is present in tbvCert. If a constrained name type is absent the
certificate, the certificate is acceptable.

6.1.3
step
(b)

17 if(excludedSubtrees.containDName(
 tbvCert.GetSubject())==true)
 return false;
 if(excludedSubtrees.containAnyOfGeneralNames(
 tbvCert.GetSubjectAltNames())==true)
 return false;
 }

Verify that the subject name and each alternative name in the subjectAltNames
extension (critical or non-critical) are consistent with the excludedSubtrees variable.
Common PKI Profile: The same remarks apply for excludedSubtrees as for
permittedSubtrees above.

6.1.3
step
(c)

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 22 of 35

18 PolicyList certPolicySet = tbvCert.GetCertPolicyOIDs();
 if((certPolicySet.empty()==false) and
 (validPolicySet.empty()==false))
 {
 if((inhibitAnyPolicy==0) and
 not(isSelfIssuedIntermediate))
 certPolicies.remove(anyPolicy);
 bool certPolicyAny = certPolicySet.contains(anyPolicy);
 bool validPolicyAny = validPolicySet.contains(anyPolicy);
 if(certPolicyAny==false) //case 6.1.3(d)(1)
 if(validPolicyAny==false) //case 6.1.3(d)(1)(i)
 validPolicySet = Intersection(validPolicySet,
 certPolicies);
 else //case 6.1.3(d)(1)(ii)
 validPolicySet = certPolicySet;
 else //case 6.1.3(d)(2)
 {} //validPolicySet remains unchanged
 }

The certPolicySet list holds all policy OIDs that are present in CertificatePolicies.
If there is no policy information in the certificate, the list remains empty. If
anyPolicy is not allowed (since inhibitAnyPolicy is in effect and the certificate is
not a self-issued intermediate certificate), remove it from certPolicySet.
In the rest of this step the validPolicySet will be maintained (if not already empty)
according to the information in tbvCert (if not empty):

• If anyPolicy is neither present in certPolicySet nor in validPolicySet, then
the resulting matching policy set is the intersection of the policy sets.

• anyPolicy in validPolicySet matches all policies in certPolicySet, so the
resulting matching policy is certPolicySet.

• On the other hand, anyPolicy in certPolicySet matches all policies in
validPolicySet, so the resulting matching set is validPolicySet itself, i.e. no
change is needed.

Common PKI Profile: GetCertPolicyOIDs() MUST consider policy OIDs in the
CertificatePolicies extension as well as in QualifiedCertificateStatements.

6.1.3
(d)(1)
(d)(2)
(d)(3)

19 if(certPolicySet.empty()==true)
 validPolicySet = {};

If the CertificatePolicies extension is not present, clear validPolicySet.
Common PKI Profile: GetCertPolicyOIDs() MUST consider policy OIDs in the
CertificatePolicies extension as well as in QualifiedCertificateStatements.

6.1.3
(e)

20 if((explicitPolicy==0) and
 validPolicySet.IsEmpty())
 return false;

If issuers or the relying party enforce (via RequireExplicitPolicy respectively via
initialExplicitPolicy) the path to have an explicit policy, but there is no valid policy,
the validation fails.

6.1.3
(f)

21 if(tbvCert.ContainsUnknownCriticalExtensions())
 return false;
 tbvCert.ProcessOtherExtensions();

Return false, if there are unknown critical extensions in the certificate.
Process (at least) the other critical extensions.

6.1.4
(o)
6.1.5
(f)

22 if(i==n) break; The last certificate in the path has been processed. Skip the rest of the cycle by
quitting the for cycle and proceed to the wrap-up procedure.

 PREPARE FOR CERTIFICATE i+1 The cycle is not in the last loop yet and prepares for the next certificate in the path.
The currently processed certificate must be a CA certificate.

6.1.4

23 if(tbvCert.PolicyMappingIsPresent() and
 tbvCert.PolicyMapping.contains(anyPolicy))
 return false;

If the PolicyMapping extension is present, it must not contain anyPolicy in any
field, otherwise the validation fails.

6.1.4
(a)

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 23 of 35

24 if(tbvCert.PolicyMappingIsPresent())
 {
 PolicyList issuerDomainPolicySet = {};
 PolicyList subjectDomainPolicySet = {};
 for(int j=1; j<PolicyMapping.size(); j++)
 {
 CertPolicyId issPol=PolicyMapping[j].getIssuerPolicy();
 CertPolicyId subPol=PolicyMapping[j].getSubjectPolicy();
 if(validPolicySet.contains(issPol) or
 validPolicySet.contains(anyPolicy))
 {
 issuerDomainPolicySet.add(issPol);
 subjectDomainPolicySet.add(subPol);
 }
 }
 validPolicySet = Subtract(validPolicySet,
 issuerDomainPolicySet);
 if(policyMapping>0)
 validPolicySet = Union(validPolicySet,
 subjectDomainPolicySet);
 }

First, the mapped polices are collected in issuerDomainPolicySet and respectively
subjectDomainPolicySet .
If policyMapping>0, policy identifiers may be mapped:
If an issuerDomainPolicy matches one policy in validPolicySet (by exact math or
by matching anyPolicy), the corresponding subjectDomainPolicy replaces
issuerDomainPolicy in validPolicySet.
If policyMapping=0, policy identifiers must not be mapped and all matching
issuerDomainPolicy items are removed from validPolicySet .
Common PKI Profile: The policy mapping operations are performed here on a set
of policy OIDs instead of a tree of policy data objects. Still, the simplified mapping
procedure yields the same results as the BPVA in [RFC5280].

6.1.4
(b)

(b)(1)

(b)(2)

25 if(tbvCert.NameConstraintsIsPresent())
 {
 if(tbvCert.ExcludedSubtreesIsPresent())
 {
 permittedSubtrees = Intersection(permittedSubtrees,
 tbvCert.GetPermittedSubtrees());
 }
 if(tbvCert.ExcludedSubtreesIsPresent())
 {
 excludedSubtrees = Union(excludedSubtrees,
 tbvCert.GetExcludedSubtrees());
 }
 }

If permittedSubtrees is present in the certificate, set the permittedSubtrees state
variable to the intersection of its previous value and the value indicated in the
extension field.
If excludedSubtrees is present in the certificate, set the excludedSubtrees state
variable to the union of its previous value and the value indicated in the extension
field.
Note that the NameConstraints extension may only occur in CA certificates.

6.1.4
(g)(1)

(g)(2)

26 if(tbvCert.GetCertType() != SelfIssuedCACert)
 {
 if(explicitPolicy>1) explicitPolicy--;
 if(policyMapping>1) policyMapping--;
 if(inhibitAnyPolicy>1) inhibitAnyPolicy--;
 }

If the certificate is not a self-issued certificate, decrement the policy related
counters.

6.1.4
(h)(1)
(h)(2)
(h)(3)

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 24 of 35

27 if(tbvCert.PolicyConstraintsIsPresent())
 {
 if(tbvCert.RequireExplicitPolicyIsPresent())
 {
 int r = tbvCert.GetRequireExplicitPolicy();
 if(r < explicitPolicy)
 explicitPolicy = r;
 }
 if(tbvCert.InhibitPolicyMapping())
 {
 int q = tbvCert.GetInhibitPolicyMapping();
 if(q <policyMapping)
 policyMapping = q;
 }
 }

If a PolicyConstraints extension is included in the certificate, modify the
explicitPolicy and policyMapping state variables as follows:
(1) If requireExplicitPolicy is present and is less than explicitPolicy, then set it to
the value in the extension.
(2) If inhibitPolicyMapping is present and is less than policyMapping, then set it to
the value in the extension.
Note that the PolicyConstraints extension may only occur in CA certificates.

6.1.4

(i)(1)

(i)(2)

28 if(tbvCert.InhibitAnyPolicyIsPresent())
 {
 int q = tbvCert.GetInhibitAnyPolicy();
 if(q < inhibitAnyPolicy)
 inhibitAnyPolicy = q;
 }

If InhibitAnyPolicy extension is included in the certificate, modify the
inhibitAnyPolicy state variable as follows:
If the value of InhibitAnyPolicy extension is less than inhibitAnyPolicy state
variable, then then set it to the value in the extension.
Note that the InhibitAnyPolicy extension may only occur in CA certificates.

6.1.4
(j)(3)

29 if(tbvCert.IsCaCertificate()==false)
 return false;

All certificates of the path, where i<n, must be issuer certificates (i.e. CA, root-CA
or cross-certificates). Check for these certificates that the BasicConstraints
extensions is present in the certificate and that the CA-flag is set.

6.1.4
(k)

30 if(tbvCert.GetCertType() != SelfIssuedCACert)
 if(maxPathLength>0)
 maxPathLenght--;
 else
 return false;

If the certificate is not a self-issued certifcate, verify that maxPathLength is greater
than zero and decrement maxPathLength by one.

6.1.4
(l)

31 if(tbvCert.PathLenConstraintIsPresent())
 {
 int len = tbvCert.GetPathLenConstraint();
 if(len < maxPathLength)
 maxPathLength = len;
 }

If pathLenConstraint is present in BasicConstraints and is less than
maxPathLength , set maxPathLength to the value of pathLenConstraint.

6.1.4
(m)

32 if(tbvCert.GetKeyCertSignKeyUsageBit() != true)
 return false;

If KeyUsage extension is present, ensure the keyCertSign bit is set.
Common PKI Profile: Note that the KeyUsage extension MUST be present and
MUST be marked critical (P1.T12.[1]).

6.1.4
(n)

33 } End of the for cycle on code line #9.
 WRAP-UP PROCEDURE All certificates in the path have been processes with success. The wrap-up

procedure verifies whether the verified path suffices policy requirements.
6.1.5

34 if(explicitPolicy>1) explicitPolicy--;

Decrement counter explicitPolicy, which will be used below. 6.1.5
(a)

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 25 of 35

35 if(tbvCert.PolicyConstraintsIsPresent() and
 tbvCert.GetRequireExplicitPolicy()==0)
 explicitPolicy = 0;

If PolicyConstraints is included in the certificate and requireExplicitPolicy has
value 0, then set explicitPolicy to 0.

6.1.5
(b)

36 if(explicitPolicy>0)
 return true;

The condition explicitPolicy>0 indicates that neither issuers nor the relying party
enforce the path to have an explicit valid policy. So the matching of the valid
policies against userInitialPolicySet in the next step is skipped and the procedure
returns true.

end of
6.1.5

37 if(validPolicySet.IsEmpty()) //6.1.5 (g)(i)
 return false;
 PolicySet matchingPolicySet = {};
 PolicySet &userPolicySet = //an alias
 pathConstraints.userInitialPolicySet;
 bool userPolicyAny = userPolicySet.contains(anyPolicy);
 bool validPolicyAny= validPolicySet.contains(anyPolicy);
 if(userPolicyAny==true) //6.1.5 (g)(ii)
 matchingPolicySet = validPolicySet;
 else //6.1.5 (g)(iii)
 if(validPolicyAny==false) //6.1.5 (d)(iii)(1,2)
 matchingPolicySet = Intersection(validPolicySet,
 userInitialPolicySet);
 else //6.1.5 (g)(iii)(3)
 matchingPolicySet = userInitialPolicySet;
 if(matchingPolicySet.IsEmpty())
 return false;

If the path has no valid policy, the validation fails.
Otherwise the valid policy set is matched against set of policies accepted by the
relying party by calculating the matching set of the validPolicySet and the
userInitialPolicySet (alias userPolicySet).
If the matching set is empty, then the path policy is inconsistent with user’s
required policy and the algorithm returns false.

6.1.5
(g)

38 return true;
}

All checks have been successfully passed, return true.

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 26 of 35

2.3 Checking the Revocation Status

Table 5: CheckRevocationStatus()

PSEUDO -CODE COMMENTS NO
TES

1 bool CheckRevocationStatus(CertInfo inout tbvCert,
 CertInfoList in tbvCerts,
 Time in refTime,
 PathConstraints in pathConstraints,
 CertInfoList inout trustedCerts,
 CrlInfoList inout trustedCrls)
{

The ‘to be verified’ PKC or AC is passed in tbvCert. If a status check to this certificate
has ever taken place and has been stored in the local database, this information is
assumed to be present in tbvCert. (If the status has never been investigated, the
statusInfoNextUpdate variable contains the startOfValidity.) The point in time, to
which status information should be obtained, is passed in refTime. A list of trusted
certificates is passed in trustedCert . The function returns false if the certificate has been
revoked or the directory service cannot be reached. Otherwise the function returns true.

2 if(refTime <= tbvCert.statusInfoNextUpdate)
 {
 if(!tbvCert.revoked)
 return true;
 else
 return (refTime < tbvCert.revocTime)
 }

If status information is locally available and it is more recent than refTime, then:
- return true if status was ‘good’;
- return true if status was ‘revoked’, but refTime is earlier than revocTime;
- return false otherwise.

If no status information is available or it is older than refTime, then obtain up-to-date
status information from a server as described in the following, since a certificate:

- having status ‘good’ at the time indicated in statusInfoNextUpdate, may have
been revoked since then;

- ‘revoked’ at the time indicated in statusInfoNextUpdate and having been ‘on
hold’, may have been released since then.

3 if(tbvCert.GetCertType() == RootCACert)
 return false;

In the validation algorithm presented in this document, root certificates are assumed to
be inherently valid, as reliable status information to a root certificate about cannot be
obtained relying on the same trusted root. Relying software should use some other
reliable out-of-band mechanism to maintain locally available status information. For
the sake of theoretical correctness, the presented algorithm returns here false here,
because the status cannot be reliably investigated. Actual implementations may
override this step with the user’s agreement.

4

 if(tbvCert.AuthorityAccessInfoPresentAndContainsOcspUrl())
 return CheckStatusViaOcsp(tbvCert,
 refTime,
 initialPolicySet,
 pathConstraints,
 trustedCerts,
 trustedCrls);

This step is OPTIONAL. Actual implementations MAY or MAY NOT choose to
support OCSP. If so and the certificate contains OCSP access info in the
AuthorityAccessInfo extension, the revocation status will be checked using OCSP.
It may furthermo re be advantageous, to check first for an appropriate, locally available
CRL, before using an on-line service.

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 27 of 35

 else

5 return CheckStatusUsingCRL(tbvCert,
 issCert,
 tbvCerts,
 refTime,
 pathConstraints,
 trustedCerts,
 trustedCrls);
}

The revocation status will be investigated using CRLs.

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 28 of 35

Table 6: CheckStatusUsingCRL()

PSEUDO -CODE COMMENTS NO
TES

1 bool CheckStatusUsingCRL(CertInfo inout tbvCert,
 CertInfo in issuerCert,
 CertInfoList in tbvCerts,
 Time in refTime,
 PathConstraints in pathConstraints,
 CertInfoList inout trustedCerts,
 CrlInfoList inout trustedCrls)
{

This function checks revocation status of the ‘to be verified’ PKC or AC, passed in
tbvCert, by means of obtaining and checking a corresponding, sufficiently recent CRL.
This will be done in the following fundamental steps:
(1) using information in tbvCert, identify and obtain a proper CRL, i.e. a

sufficiently recent CRL, corresponding to tbvCert (Steps #2…#5),
(2) using information in the CRL, identify and obtain a proper certificate (i.e. one

with the signing key and permitted for CRL signing) of the CRL issuer and
validate it using the certificate validation algorithm (Steps #6...#11),

(3) verify the signature over the CRL (Step #12),
(4) check status of tbvCert (Steps #13...#15).

If a status check to tbvCert has ever taken place and has been stored in the local
database, this information is assumed to be present in tbvCert. (If the status has never
been investigated, the statusInfoNextUpdate variable contains the startOfValidity.)
issuerCert contains the certificate of the issuer of tbvCert. The semantics of the other
parameters is identical to that in ValidateCertificate() (Table 2). The function returns
false if the certificate has been revoked or the directory service cannot be reached.
Otherwise the function returns true.

2 CRLDistributionPoint cdp = tbvCert.GetFirstCdp();

Typically, the CRLDistributionPoints extension contains just one CDP, but the syntax
allows giving information to more than one CDP. This is the case when the CA
segments the CRL according to different sub-domains or revocation reasons.
Segmentation increases client performance, if large CRLs are to be handled. By storing
downloaded segments, only segments that run out of validity need to be downloaded
again. (Another way of increasing performance is maintaining local copies of a large
CRL by means of regularly downloading delta-CRLs.)
For simplicity of the description here, it is assumed that merely one CDP is present.
The cdp variable may remain empty, if the CRLDistributionPoints extension is absent.
Applications SHOULD be able to handle segmented CRLs.
Common PKI Profile: Conforming certificates MUST contain the
CRLDistributionPoint extension in case of indirect CRLs. “Direct” CRLs MUST
either be stored at the node of the CA issuing the certificate in question or a
CRLDistributionPoint extension MUST be included with directory access information.

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 29 of 35

3 bool crlIsIndirect;
 if(cdp.IsEmpty())
 crlIsIndirect = false;
 else if(cdp.ContainsCrlIssuer())
 crlIsIndirect = true;
 else
 crlIsIndirect = false;

In this step, it will be determined, whether the required CRL is an indirect one.
If a CRLDistributionPoints extension in the certificate contains CRL access
information and any of the CDPs contains the crlIssuer field, an indirect CRL is to be
used.
Common PKI Profile: The support of indirect CRLs is RECOMMENDED.

4 Name crlIssuerDName;
 if(crlIsIndirect)
 crlIssuerDName = cdp.crlIssuer.GetDirectoryName();
 else
 crlIssuerDName = tbvCert.GetIssuerDName();

The DName of the CRL-issuer is determined.
Common PKI Profile: Note that the CDP MUST contain the DName of the issuer of
each indirect CRL (P1.T22.#5 & [5]).

5 CrlInfo tbvCrl;
 if(trustedCrls.findCrlInfo(crlIssuerDName, tbvCrl)==false)
 tbvCrl.nextUpdate = <minimal date value>;
 if(refTime >= tbvCrl.nextUpdate)
 {
 if(<using URLs in CDP/alt.names to locate CRL>)
 {
 LdapUrl crlUrl;
 if(crlIsIndirect)
 crlUrl = cdp.distributionPoint.GetFirstLdapUrl();
 else
 crlUrl = tbvCert.GetFirstLdapUrlFromIssuerAltNames();
 CrlInfoList downloadedCrls;
 if(RequestCrlsViaLdap(crlUrl, downloadedCrls)==false)
 return false;
 if(downloadedCrls.findCrlInfo(crlIssuerDName,tbvCrl)==false
)
 return false;
 }
 else
 {
 tbvCrl = <use some alternative method to download the CRL>
 }
 }

At this step, the proper CRL is either selected from the local database of trustedCrls.
The proper CRL is identified by means of the DName of the issuer of the CRL, which
is contained in the crlIssuerDName variable. If it is not sufficiently recent, it will be
downloaded from an LDAP server by means of the RequestCrlsViaLdap() function..
This RequestCrlsViaLdap() function returns false immediately, if the service cannot be
connected. Note that CRLs are usually stored in a certificateRevocationList or an
authorityRevocationList attribute of the CDP in the directory. (P4.T1.[22] & [23])
Theoretically, there may be several CRLs present at an LDAP node. The proper CRL is
identified in the findCrlInfo() function by means of the crlIssuerDName variable.
Application MAY use alternative methods to obtain the proper CRL or MAY choose to
check all CRLs present at the given node.
[RFC5280]: Note that the X.509 optional field nextUpdate MUST be included in all
CRLs.

6 AuthorityKeyIdentifier crlIssuerKeyId =
 tbvCrl.GetAuthorityKeyId();

At this step, the key identifier of the signing certificate of the CRL issuer is determined.
Common PKI Profile: The AuthorityKeyIdentifier extension MUST always be present
in a conforming CRL (P1.T33.[1]). Note furthermore that IssuerAltNames SHOULD be
present in indirect CRLs and SHOULD contain an LDAP-URL of the CRL issuer’s
signing certificate. (P1.T33.[2]).

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 30 of 35

7 CertInfoList crlIssuerCerts;
 CertInfo crlIssuerCert;
 if(trustedCerts.findCert(crlIssuerKeyId,
 crlIssuerCert))==false)
 {
 for(int i=0; i<crlIssuerCerts.size(); i++)
 {
 crlIssuerCert = crlIssuerCerts.GetItem(i);
 if(ValidateCertificate (crlIssuerCert,
 tbvCerts, refTime, crlSigning, pathConstraints,
 trustedCerts, trustedCrls)==true)
 goto #12;
 }
 }

Analogously to Steps #8…#12 in Table 3, Steps #7…#11 of this function try locate a
proper certificate of the CRL signer. Proper certificates will be:

- first searched in the local database (represented here by trustedCerts) (Step
#7),

- then among the “non-trusted” certificates delivered in tbvCerts (Step #8)
- and finally in a directory or some other external resource (Steps #9,#10).

For each proper certificate found a validation will be attempted by calling
ValidateCertificate(). This may involve, as usual, building different paths as long as a
path to a trusted root certificate is found and validated. Proceed to Step #12 as soon as a
valid certificate is found.

8 if(validCrlIssuerCertFound==false &&
 tbvCerts.findCertWithSubjectKeyId(crlIssuerKeyId,
 crlIssuerCert))
 {
 for(int i=0; i<crlIssuerCerts.size(); i++)
 {
 crlIssuerCert = crlIssuerCerts.GetItem(i);
 if(ValidateCertificate (crlIssuerCert,
 tbvCerts, refTime, crlSigning, pathConstraints,
 trustedCerts, trustedCrls)==true)
 goto #12;
 }
 }

In this step, a proper certificate of the CRL signer will be searched among the
certificates delivered in tbvCerts. It will be attempted to validate each proper
certificate.

9 CertInfoList downloadedCerts;
 if(<using URLs in alt.names and CDPs to locate issuer certs>)
 {
 LdapUrl crlIssCertUrl;
 if(tbvCrl.IssuerAltNamesIsPresentAndContainsLdapUrl())
 crlIssCertUrl = tbvCrl.getFirstLdapUrlFromIssuerAltNames();
 else if(cdp.IsEmpty()==false)
 crlIssCertUrl = cdp.distributionPointName.getFirstLdapUrl();
 if(crlIssCertUrl.IsEmpty())
 return false;
 if(crlIsIndirect)
 {
 if(RequestCertsViaLdap(crlIssCertUrl,downloadedCerts)==false)
 return false;
 }
 else
 {
 if(RequestCaAndCrossCertsViaLdap(crlIssCertUrl,
 downloadedCerts)==false)
 return false;
 }
 }

In this step, URLs will be determined for directory access.
Common PKI Profile: Note that IssuerAltNames SHOULD be present in indirect
CRLs and SHOULD contain the LDAP-URL of the CRL issuer’s signing certificate.
(P1.T33.[2]).

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 31 of 35

 else
 {
 downloadedCerts = <use some alternative method to download
 certs of the CRL issuer>
 }

10 if(downloadedCerts.findCertWithSubjectKeyId(crlIssuerKeyId,
 crlIssuerCerts))
 {
 for(int i=0; i<crlIssuerCerts.size(); i++)
 {
 crlIssuerCert = crlIssuerCerts.GetItem(i);
 if(ValidateCertificate (crlIssuerCert,
 tbvCerts, refTime, crlSigning, pathConstraints,
 trustedCerts, trustedCrls)==true)
 goto #12;
 }
 }

In this step, a proper certificate of the CRL signer will be searched among the
downloadedCerts. It will be attempted to validate each proper certificate.

11 return false; Return false, if no valid certificate of the CRL issuer has been found in Steps #7….#10.
12 if(VerifySignature(tbvCrl.GetToBeSignedData(),

 crlIssuerCert.GetPublicKeyInfo())==false)
 return false;
 trustedCrls.UpdateCrlList(crl);

The signature over the CRL is verified. If successful, the CRL is added to (respectively
updated if readily present) in the list of trustedCrls for reuse.

13 CrlEntry crlEntry;
 if(tbvCrl.FindEntry(tbvCert.GetIssuerDName()
 tbvCert.GetSerialNumber(),
 crlEntry) == false
 {
 tbvCert.revoked = false;
 tbvCert.revocTime = tbvCert.GetValidityNotAfter();
 tbvCert.revocReason = ‘unspecified’;
 tbvCert.statusInfoNextUpdate = tbvCrl.NextUpdate;
 return true;
 }

As the CRL has been found valid, now we can check the status of tbvCert.
Retrieve revocation info from the matching CRL entry, if present. The matching entry
can be identified by means of the issuer and the serialNumber of tbvCert.
SerialNumber is part of the entry (P1.T32.#8), whereas the issuer is indicated by:

- either in the CertificateIssuer extension (P1.T47.#4) in the entry in question or in a
preceding entry most near to the entry in question. (The CertificateIssuer entry
extension MUST be used in indirect CRLs.)

- or in the issuer field of the “direct” CRL (T32.#4), if not indicated by a
CertificateIssuer extension.

If tbvCert is not listed in the CRL, it will be considered valid. statusInfoNextUpdate
will be set to the nextUpdate time of the CRL to maintain the local database.

14 Time thisUpdate = tbvCrl.GetThisUpdate();
 if(thisUpdate > GetCurrentTime())
 return false;
 Time nextUpdate;
 if(tbvCrl.NextUpdateIsPresent()==false)
 return false;
 nextUpdate = tbvCrl.GetNextUpdate();
 if(nextUpdate < GetCurrentTime())
 return false;

tbvCert has been found in the CRL.
The dates in the fields thisUpdate and nextUpdate are retrieved and checked at this step
for plausibility as RECOMMENDED in P4.T8.[7] for OCSP responses.
Note that the nextUpdate field MUST always be present. (See P1.T32.[5])

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 32 of 35

15 tbvCert.revoked = true;
 tbvCert.revocTime = crlEntry.GetRevocationDate();
 if(crlEntry.ReasonCodeIsPresent())
 tbvCert.revocReason = crlEntry.GetReasonCode();
 else
 tbvCert.revocReason = ‘unspecified’;
 tbvCert.statusInfoNextUpdate = nextUpdate;
 return (refTime < tbvCert.revocTime);
}

tbvCert turned out to be revoked. Retrieve revocation information from crlEntry. The
reason of the revocation MAY be given in the reasonCode extension.

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 33 of 35

Table 7: CheckStatusViaOcsp()

PSEUDO -CODE COMMENTS NO
TES

1 bool CheckStatusViaOcsp(CertInfo inout tbvCert,
 Time in refTime,
 PathConstraints in pathConstraints,
 CertInfoList inout trustedCerts,
 CrlInfoList inout trustedCrls)
{

The ‘to be verified’ PKC or AC is passed in tbvCert. If a status check to this certificate
has ever taken place and has been stored in the local database, this information is
assumed to be present in tbvCert. (If the status has never been investigated, the
statusInfoNextUpdate variable contains the startOfValidity.) The point in time, to
which status information should be obtained, is passed in refTime. A list of trusted
certificates is passed in trustedCert. The function returns false if the certificate has been
revoked or the OCSP service cannot be reached. Otherwise the function returns true.

2 OcspUrl url = tbvCert.GetFirstHttpUrl();
 OcspRequest request;
 CertID tbvCertID;
 tbvCertID.Set(sha_1,
 SHA1(tbvCert.GetIssuer()),
 SHA1(tbvCert.GetPKWithoutTagLenUnusedBits()),
 tbvCert.GetSerialNumber());
 request.FillInOcspRequest(tbvCertID);
 OcspResponse response;
 if(RequestStatusInfoViaOcsp(url, request, response)==false)
 return false;

The URL of the OCSP service will be extracted and a request will be generated.
The function returns false, if the service cannot be connected to or it returned an error
code in responseStatus (P4.T7.#2).
Common PKI Profile: Note that certID (P4.T6.#4) MUST be build using SHA1 and
respectively the OID ‘sha_1’.

3 CertInfo respCert = response.GetResponderCert();
 if(VerifySignature(response.GetToBeSignedData(),
 responderCert.GetPublicKeyInfo())==false)
 return false;
 if(ValidateCertificate(respCert,
 response.RetrieveCerts(),
 response.GetProducedAtTime();
 ocspSigning,
 pathConstraints,
 trustedCerts,
 trustedCrls)==false)
 return false;

In case of a definitive response (responseStatus=’successful’), the responder certificate
is retrieved from the response and the signature over the response is verified. Finally,
the responder’s certificate is validated by means of a recursive call to the certificate
path validation function.
Common PKI Profile: Note that Common PKI conforming responses always contain
the responder’s signing certificate (P4.T8.[3]). The signing certificate can be identified
among the other certificates returned in certs (P4.T8.#7) using the information in the
responderID field (P4.T8.#10).

4 if(response.ArchiveCutoffIsPresent())
 {
 Time cutoffDate = response.GetArchiveCutoff();
 if(cutoffDate > tbvCert.GetValidityNotAfter())
 return false;
 }

The condition cutoff date > expiry date (which is identical to the condition: producedAt
time > expiry date + retention period) indicates the fact, that status information
returned by the OCSP responder is not any more reliable, e.g. if the certificate and
corresponding status information have been deleted from the directory. (P4.T13.[1])

5 SingleResponse singleResp;
 if(response.FindSingleResponse(tbvCertID, singleResp)==false)
 return false;

The appropriate single response is read from response.

6 if(AnyOfUserPoliciesEnforcesPositiveStatement(Some policies may demand that the responder delivers evidence that the certificate has

Common PKI Part 5: Certificate Path Validation Version 2.0

Certificate Path Validation Procedure Common PKI Part 5 – Page 34 of 35

 pathConstraints,
 userInitialPolicySet))
 {
 if(singleResp.CertHashIsPresent()==false)
 return false;
 CertHash certHash = singleResp.GetCertHash();
 if(Hash(tbvCert.DerEncode(), certHash.hashAlgorithm) !=
 certHash.certificateHash)
 return false;
 }

been indeed issued by the CA and it is present in the directory. (P4.T15.[1])
If this is required the certificate hash, delivered in the single response will be proven
against the hash value built from tbvCert.

7 Time thisUpdate = singleResp.GetThisUpdate();
 if(thisUpdate > GetCurrentTime())
 return false;

 Time nextUpdate;
 if(singleResp.NextUpdateIsPresent())
 {
 nextUpdate = singleResp.GetNextUpdate();
 if(nextUpdate < GetCurrentTime())
 return false;
 }
 else
 {
 nextUpdate = thisUpdate + 1 sec;
 }

The dates in the fields thisUpdate and nextUpdate are retrieved and checked for
plausibility as RECOMMENDED in P4.T8.[7].

8 if(response.GetStatus()==’good’)
 {
 tbvCert.revoked = false;
 tbvCert.revocTime = tbvCert.GetValidityNotAfter();
 tbvCert.revocReason = ‘unspecified’;
 tbvCert.statusInfoNextUpdate = nextUpdate;
 return true;
 }
 else if(response.GetStatus()==’revoked’)
 {
 tbvCert.revoked = true;
 tbvCert.revocTime = singleResp.GetRevocationTime();
 if(singleResp.RevocReasonIsPresent())
 tbvCert.revocReason = singleResp.GetRevocationReason();
 else
 tbvCert.revocReason = ‘unspecified’;
 tbvCert.statusInfoNextUpdate = nextUpdate;
 return (refTime < tbvCert.revocTime);
 }
 else
 return false;
}

After successful verification of the signature and the certificate path, the status
information is retrieved from the appropriate single response and added to tbvCert.
Common PKI Profile: Note that Common PKI conforming responders may return
status ‘good’ only if they possess definite knowledge about the requested certificate’s
status.

Common PKI Part 5: Certificate Path Validation Version 2.0

References Common PKI Part 5 – Page 35 of 35

References

[RFC2560] Internet X.509 Public Key Infrastructure - Online Certificate Status Protocol –
OCSP, RFC 2560, June 1999

[RFC4510] Lightweight Directory Access Protocol (LDAP): Technical Specification Road
Map, RFC4510, June 2006

[RFC4516] Lightweight Directory Access Protocol (LDAP): Uniform Resource Locator,
RFC 4516, June 2006

[RFC5280] Internet X.509 Public Key Infrastructure – Certificate and Certificate
Revocation List (CRL) Profile, May 2008

[X.509:2005] ITU-T X.509: Information technology – Open Systems Interconnection – The
Directory: Public-key and attribute certificate frameworks, 2005

COMMON PKI SPECIFICATIONS
FOR INTEROPERABLE APPLICATIONS

FROM T7 & TELETRUST

 SPECIFICATION

PART 6

CRYPTOGRAPHIC ALGORITHMS

VERSION 2.0 – 20 JANUARY 2009

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Contact Information Common PKI Part 6 – Page 2 of 21

Contact Information

The up-to-date version of the Common PKI specification can be downloaded from
www.common-pki.org or from www.common-pki.de
Please send comments and questions to common-pki@common-pki.org.

Editors of Common PKI specifications:

Hans-Joachim Bickenbach

Jürgen Brauckmann

Alfred Giessler

Tamás Horváth

Hans-Joachim Knobloch

© T7 e.V. and TeleTrusT e.V., 2002-2009

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Document History Common PKI Part 6 – Page 3 of 21

Document History

VERSION
DATE

CHANGES

1.0.1
15.11.2001

First public edition

1.0.2
19.7.2002

Conformance requirements in chapter 2 “Algorithm Support” are presented in tables
Editorial and stylistic changes, and removal of bugs

1) AES has been announced for the next version

1.0.2
11.8.2003

Incorporated all changes from Corrigenda version 1.2

1.1
16.03.2004

Several editorial changes. The most relevant changes affecting technical aspects are:
1) RSAES-OAEP must no longer be supported, but MAY.
2) All specified CMS signature algorithm OIDs for RSA MUST be accepted.
3) RIPEMD must no longer be supported, but SHOULD be accepted and SHOULD NOT

be generated.
4) DES3-CBC must no longer be supported, but SHOULD be accepted and SHOULD NOT

be generated.
5) AES is now included as possible content encryption algorithm.
6) Cryptographic algorithms required and/or recommended for XML have been added.

1.1

13/10/2008

Incorporated all changes from Corrigenda to ISIS-MTT 1.1

2.0
20/Jan/2009

Name change from ISIS-MTT to Common PKI.
Reflected name change of RegTP to BNetzA.
Adapted to new versions of the base standards:

- BNetzA Notification 2008

- ANSI X9.42:2003

- ANSI X9.62:2005

- FIPS 46-3

- FIPS 180-2

- PKCS#1 v2.1

- PKCS#5 v2.1

- ISO/IEC 10118-3:2004

- RFC 3279

- RFC 3370

- RFC 385ß

- RFC 3851

- RFC 3852

- RFC 3447

- RFC 4231

- RFC 5280

- W3C XML Signature Syntax and Processing (Second Edition)

Various corrections and clarifications.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Table of Contents Common PKI Part 6 – Page 4 of 21

Table of Contents

1 Preface... 5

2 Algorithm Support .. 6

2.1 One-Way Hash Functions ...6

2.2 Signature Algorithms ...6

2.3 Content Encryption Algorithms ...7

2.4 Symmetric Key Wrap..7

2.5 Key Encryption Algorithms ..7

2.6 Key AgreementAlgorithms..7

2.7 Subject Public Key Algorithms ...7

2.8 Message Authentication Algorithms ..7

References... 20

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Preface Common PKI Part 6 – Page 5 of 21

1 Preface

This part of the Common PKI specification defines a list of approved cryptographic
algorithms for digital signatures, encryption and subject public keys to be supported by
implementations that comply with the Common PKI specification.

It is mainly based on the PKIX documents [RFC 5280] and [RFC 3279], the W3C documents
[XML_SIG] and [XML_ENC], and the OSCI profile [OSCI]. It contains all supplementary
specifications, recommendations and restrictions the Common PKI document has defined in
addition to the corresponding base documents.

The S/MIME standard version 3.1 documents [RFC 3370], [RFC 3850], [RFC 3851] and
[RFC 3852] have been taken into account.

In addition to the requirements, which have to be fulfilled by conforming implementations,
recommendations are made for supporting further algorithms.

Items of the referenced standards that are not explicitly mentioned in this specification
SHALL be treated in the same way as specified in the referenced base standards.

Conformance requirements that Common PKI compliant components MUST satisfy are
specified in the following chapter.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 6 of 21

2 Algorithm Support

This chapter identifies a list of cryptographic algorithms required and/ or recommended by
the different parts of the Common PKI specification.

Most of the algorithms identified in the following sub-chapters are described in

• the PKIX documents [RFC 5280] and [RFC 3279], and

• for XML based data structures in the W3C documents [XML_DSIG] and
[XML_ENC].

For all other algorithms, e.g. all encryption algorithms, references to the corresponding
specifications are provided.

The following tables provide information for each algorithm, including

• the short name,

• the respective object identifier,

• or in the case of XML the related W3C link, and

• requirements and recommendations for conforming implementations.

2.1 One-Way Hash Functions

A cryptographic hash function is used to compute the message digest of a document to be
signed. A hash function must be collision-resistant which means that it is computationally
infeasible to find two different documents yielding the same message digest (which implies
that it is also infeasible to find a different document yielding the same message digest as a
given document).

Common PKI compliant components SHALL satisfy the conformance requirements for one-
way hash function as specified in Table 1.

2.2 Signature Algorithms

A signature algorithm is applied to the message digest (output value of the hash function) of
the document to be signed to generate a signature.

Signature algorithms are used for signing certificates, revocation lists, PKI messages and both
S/MIME and PEM messages. Algorithm identifiers are used in the corresponding fields of
certificates, CRLs and messages to identify the applied signature algorithm. The signature
algorithm identifier identifies both the hash function and the signature algorithm, e.g. RSA.

Common PKI compliant components SHALL satisfy the conformance requirements for
signature algorithms as specified in Table 2.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 7 of 21

2.3 Content Encryption Algorithms

A content encryption algorithm is applied in order to encrypt data, whereas a key encryption
algorithm (chapter 2.5) is used for encrypting the associated content encryption key.
Encryption algorithms are applied for the encryption of both confidential PKI-messages and
S/MIME and PEM messages, as well as for the encryption of XML documents.

Common PKI compliant components SHALL satisfy the conformance requirements for data
encryption algorithms as specified in Table 3.

2.4 Symmetric Key Wrap

Common PKI compliant components that support XML SHALL satisfy the conformance
requirements for symmetric key wrap algorithms as specified in Table 4.

2.5 Key Encryption Algorithms

Key encryption algorithms are used for the encryption of content encryption keys (chapter
2.3). The used key encryption keys are the public keys of the intended recipients of the
encrypted content.

Common PKI compliant components SHALL satisfy the conformance requirements for key
encryption algorithms as specified in Table 5. Both are specified in [PKCS#1].

2.6 Key AgreementAlgorithms

Key agreement is only considered in Common PKI for components that support XML.
Common PKI compliant components that support XML SHALL satisfy the conformance
requirements for key agreement algorithms as specified in Table 6.

2.7 Subject Public Key Algorithms

Common PKI compliant components SHALL satisfy the conformance requirements for
subject public key algorithms whose related OIDs are contained in a certificate as specified in
Table 7.

2.8 Message Authentication Algorithms

Message authentication algorithms are applied for the protection of PKI messages, especially
for the authentication of initial certification requests and revocation requests.

Common PKI compliant components SHALL satisfy the conformance requirements for
symmetric key based MAC (message authentication code) algorithms as specified in Table 8.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 8 of 21

Table 1: One-Way Hash Functions

CRYPTOGRAPHIC ALGORITHMS REFERENCES COMMON PKI S UPPORT

NAME SEMANTICS DOCUMENT CHAPTER STATUS GEN PROC VALUES

NOTES

1 SHA-1 one-way hash
function

[RFC 3279]
[RFC 3370]
[XML_DSIG]

2.1.3
2.1

++ ++ ++ OID: 1.3.14.3.2.26

http://www.w3.org/2000/09/xmldsig#sha1

[1]
[2]
[3]

2 SHA-256 one-way hash
function

[RFC 4055]
[XML_ENC]
[FIPS 180-2]

 n. a. + + OID: 2.16.840.1.101.3.4.2.1
http://www.w3.org/2001/04/xmlenc#sha256

[1]
[4]

2a SHA-384 one-way hash
function

[RFC 4055]
[XML_ENC]
[FIPS 180-2]

 n. a. + + OID: 2.16.840.1.101.3.4.2.2
http://www.w3.org/2001/04/xmlenc#sha384

[4]

3 SHA-512 one-way hash
function

[RFC 4055]
[XML_ENC]
[FIPS 180-2]

 n. a. + + OID: 2.16.840.1.101.3.4.2.3
http://www.w3.org/2001/04/xmlenc#sha512

[4]

4 RIPEMD-
160

one-way hash
function

[RIPEMD-160]
[ISO/IEC 10118-3]
[XML_DSIG]

 n. a. - + OID: 1.3.36.3.2.1

http://www.w3.org/2001/04/xmlenc#ripemd160

[5]

[3]

5 MD2 one-way hash
function

[RFC 3279]
[RFC 1319]

2.1.1 - -- -- OID: 1.2.840.113549.2.2

6 MD5 one-way hash
function

[RFC 3279]
[RFC 3370]
[RFC1321]

2.1.2
2.2

- -- +- OID: 1.2.840.113549.2.5
[6]

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 9 of 21

[1] Common PKI Profile: SHA -1 is the preferred one-way hash function. This requirement is conformant with the PKIX and the XML_DSIG documents. SHA-1 is defined
in [FIPS 180-2] and [ISO/IEC 10118-3]. In cases where SHA-1 will not be used due to security considerations, the preferred one-way hash function is SHA-256.

[2] S/MIME requires that sending and receiving agents MUST support SHA-1.

[3] This is only a requirement for compliant components that support XML.

[4] SHA-256, SHA-384 and SHA-512 are referenced in XML_ENC, but not in XML_DSIG.

[5] Common PKI Profile: The support of the RIPEMD-160 hash function on the processing side is recommended. This algorithm is published in [BNetzA08] as an
algorithm appropriate and allowed for signing according to the Ge rman law on digital signatures [SigG01]. Neither PKIX nor [RFC 3370] specifies RIPEMD-160.
Therefore it SHOULD NOT be used on the generation side for the sake of interoperability with PKIX and/or S/MIME compliant components.

[6] Receiving agents SHOULD support MD5 for providing backward compatibility with MD5-digested S/MIME v2 SignedData objects.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 10 of 21

Table 2: Signature Algorithms

CRYPTOGRAPHIC ALGORITHMS REFERENCES COMMON PKI SUPPORT

NAME SEMANTICS DOCUMENT CHAPTER STATUS GEN PROC VALUES

NOTES

1 sha1WithRSAEncryption RSA
signature
algorithm

[RFC 3279]
[RFC 3851]
[FIPS 180-2]
[ISO/IEC
10118-3]
[XML_DSIG]

2.2.1
2.2

+- ++ ++ OID: 1.2.840.113549.1.1.5

http://www.w3.org/2000/09/xmldsig#rsa-
sha1

[1,3,4,6, 9]

[7]

2 sha256WithRSAEncryption RSA
signature
algorithm

[RFC 4055]
[FIPS 180-2]
[RFC 4051]

 n. a. +- + OID: 1.2.840.113549.1.1.11

http://www.w3.org/2001/04/xmldsig-
more#rsa-sha256

[1,3,4,6]

[7]

2a sha384WithRSAEncryption RSA
signature
algorithm

[RFC 4055]
[FIPS 180-2]
[RFC 4051]

 n. a. +- + OID: 1.2.840.113549.1.1.12

http://www.w3.org/2001/04/xmldsig-
more#rsa-sha384

[1,3,4,6]

[7]

3 sha512WithRSAEncryption RSA
signature
algorithm

[RFC 4055]
[FIPS 180-2]
[RFC 4051]

 n. a. +- + OID: 1.2.840.113549.1.1.13

http://www.w3.org/2001/04/xmldsig-
more#rsa-sha512

[1,3,4,6]

[7]

4 rsaSignatureWithRipemd160 RSA
signature
algorithm

[RIPEMD-
160]
[ISO/IEC
10118-3]
[RFC 4051]

 n. a. - + OID: 1.3.36.3.3.1.2

http://www.w3.org/2001/04/xmldsig-
more/rsa-ripemd160

[2,3,6,9]

[7]

5 md2-WithRSAEncryption RSA [RFC 3279] 2.2.1 +- -- -- OID: 1.2.840.113549.1.1.2 [1,3,4,6]

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 11 of 21

signature
algorithm

6 md5WithRSAEncryption RSA
signature
algorithm

[RFC 3279]
[RFC 3851]

2.2.1
2.2

+- -- +- OID: 1.2.840.113549.1.1.4 [1,3,4,6]

7 dsa-with-sha1 DSA
signature
algorithm

[RFC 3279]
[RFC 3851]
[FIPS 186-2]
[XML_DSIG]

2.2.2
2.2

++

+-

++

++

++

OID: 1.2.840.10040.4.3

http://www.w3.org/2000/09/xmldsig#dsa-
sha1

[5]

[7,8]

8 ecdsa-with-SHA1 ECDSA
signature
algorithm

[RFC 3279]
[X9.62]

2.2.3 +- +- +- OID: 1.2.840.10045.4.1

9 RSASSA-PSS RSA
signature
algorithm

[RFC 4055] 3 +- +- +- OID: 1.2.840.113549.1.1.10 [10,11]

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 12 of 21

[1] The PKIX documents do not make any recommendation which of the RSA signature algorithms (md2withRSAEncryption,
md5withRSAEncryption, sha1WithRSAEncryption) should be preferred

 Common PKI Profile: sha1WithRSAEncryption is the preferred signature algorithm. In cases where sha1WithRSAEncryption will not be
used due to security considerations, the preferred signature algorithm is sha256WithRSAEncryption.

[2] Common PKI Profile: The support of the RIPEMD-160 hash function on the processing side is recommended. This algorithm is published
in [BNetzA08] as an algorithm appropriate and allowed for signing according to the German law on digital signatures [SigG01]. Neither
PKIX nor S/MIME specifies RIPEMD-160. Therefore it SHOULD NOT be used on the generation side for the sake of interoperability with
PKIX and/or S/MIME compliant components.

[3] Conforming implementations SHALL use the PKCS1-v1_5 padding and encoding conventions described in PKSC#1 [RFC 3447].
 The parameter component of this algorithm identifier shall be the ASN.1 type NULL.
[4] S/MIMEv3.1 requires that receiving agents MUST support rsaEncryption with SHA-1 hash for message signature. Receiving agents MUST

be capable of verifying signatures on certificates and CRLs made with md5withRSAEncryption and sha-1WithRSAEncryption with key sizes
from 512 bits to 2048 bits.

[5] S/MIMEv3.1 requires that receiving agents MUST support dsa-with-sha1 for message signature. Receiving agents MUST be capable of
verifying signatures on certificates and CRLs made with dsa-with-sha1.

[6] If any of the RSA based signature algorithms is used to sign CMS messages, the hash function OID is explicitly stated in the digestAlgorithm
field of the SignerInfo (P3.T4.#3). In accordance with [RFC 3370] the OID to be inserted in the signatureAlgorithm field of the SignerInfo
(P3.T4.#5) MUST be rsaEncryption (OID: 1.2.840.113549.1.1.1) when generating a signed CMS message, regardless which RSA based
signature algorithms is used.
When processing a signed CMS message the OIDs for sha-1WithRSAEncryption and rsaSignatureWithripemd160 MUST also be accepted in
the signatureAlgorithm field of the SignerInfo, provided that the respective hash function is present in digestAlgorithm field.

[7] This is only a requirement for compliant components that support XML.
[8] Note that DSA is the default signature algorithm in [XML_DSIG].
[9] S/MIMEv3.1 requires that sending agents MUST support either dsa-with-sha1 or rsaEncryption with SHA-1 hash for message signature.
[10] [PKCS#1] recommends the use of RSASSA-PSS for new applications.

Common PKI Profile: Although RSASSA-PSS is considered more secure than RSA signature schemes based on PKCS#1_v1.5 padding, its
use may lead to interoperability problems due the fact that it is not supported in [RFC 3370] and [RFC 3851]. Therefore it is OPTIONAL.

[11] Support for RSASSA-PSS in XML digital signatures is currently under discussion at W3C. The algorithm identifier proposed in [XMLDSIG-
PSS] is http://www.w3.org/2007/09/xmldsig-pss/#rsa-pss.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 13 of 21

Table 3: Content Encryption Algorithms

CRYPTOGRAPHIC ALGORITHMS REFERENCES COMMON PKI SUPPORT

NAME SEMANTICS DOCUMENT CHAPTER STATUS GEN PROC VALUES

NOTES

1 des-cbc content encryption algorithm [RFC 3851]
[FIPS 46-3]

2.7 n.a. ++ ++ OID: 1.3.14.3.2.7 [1], [6]

2 des-ede3-cbc content encryption algorithm [RFC 3851],
[X9.52],
[FIPS 46-3],
[XML_ENC]

2.7 ++ ++ ++ OID: 1.2.840.113549.3.7
http://www.w3.org/2001/04/x
mlenc#tripledes-cbc

[2], [6]
[7]

3 des3-cbc content encryption algorithm [X9.17]
[MTTv2]

 - + OID: 1.3.36.3.1.3.2.1 [3], [6]

4 rc2-cbc content encryption algorithm [RFC 3851] 2.7 + -- +- OID: 1.2.840.113549.3.2 [4]
5 aes128-cbc

aes192-cbc

aes256-cbc

content encryption algorithm [RFC 3851]
[FIPS 197]
[RFC 3565]
[XML_ENC]

2.7 + +- +- OID: 2.16.840.1.101.3.4.1.2
http://www.w3.org/2001/04/x
mlenc#aes128-cbc
OID: 2.16.840.1.101.3.4.1.22
http://www.w3.org/2001/04/x
mlenc#aes192-cbc
OID: 2.16.840.1.101.3.4.1.42
http://www.w3.org/2001/04/x
mlenc#aes256-cbc

[5]
[7]

[7]

[7]

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 14 of 21

[1] The DES algorithm is defined in [FIPS 46-3]; the cipher block-chaining mode (CBC) is defined in [FIPS 81]. The padding mechanism to be
applied is described in the PEM specification [RFC1423] and in the PKCS#5 specification [PKCS#5].

[2] S/MIMEv3.1 requires that sending and receiving agents MUST support encryption and decryption with DES-EDE3-CBC in 3-key mode of
operation as defined in [X9.52] and [FIPS 46-3]. They SHOULD support encryption and decryption with AES at a key size of 128, 192, and
256 bits.

[3] Triple-DES was standardized in [X9.17] in 2-key mode of operation.
Common PKI Profile: des3-cbc is specified in [MTTv2] and SHOULD therefore be accepted for backwards compatibility with MailTrusT
v2 compliant components. However S/MIME does not specify this algorithm. Therefore it SHOULD NOT be used on the generation side for
the sake of interoperability with S/MIME compliant components.

[4] S/MIMEv3 requires that receiving agents SHOULD support encryption and decryption using the RC2 [RFC 3370] or a compatible algorithm
at a key size of 40 bits.

[5] Three AES algorithm identifiers are defined for key sizes of 128,192, and 256 bits. The OIDs for AES content encryption algorithms are
defined in [RFC 3565].

[6] At least one of these algorithms MUST be supported during the generation process.
[7] This is only a requirement for compliant components that support XML.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 15 of 21

Table 4: Symmetric Key Wrap Algorithms

CRYPTOGRAPHIC ALGORITHMS REFERENCES COMMON PKI SUPPORT

NAME SEMANTICS DOCUMENT CHAPTER STATUS GEN PROC VALUES

NOTES

1 3DES key encryption algorithm [XML_ENC]
[X9.52]

 ++ ++ http://www.w3.org/2001/04/x
mlenc#kw-tripledes-cbc

[1]

2 AES128 key encryption algorithm [XML_ENC]
[FIPS 197]

 ++ ++ http://www.w3.org/2001/04/x
mlenc#kw-aes128-cbc

[1]

2 AES192 key encryption algorithm [XML_ENC]
[FIPS 197]

 - + http://www.w3.org/2001/04/x
mlenc#kw-aes192-cbc

[1]

4 AES256 key encryption algorithm [XML_ENC]
[FIPS 197]

 ++ ++ http://www.w3.org/2001/04/x
mlenc#kw-aes256-cbc

[1]

[1] This is only a requirement for compliant components that support XML.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 16 of 21

Table 5: Key Encryption Algorithms

CRYPTOGRAPHIC ALGORITHMS REFERENCES CO MMON PKI SUPPORT

NAME SEMANTICS DOCUMENT CHAPTER STATUS GEN PROC VALUES

NOTES

1 rsaEncryption key encryption algorithm [PKCS#1] 7.2 + ++ ++ OID: 1.2.840.113549.1.1.1 [1]
2 RSA PKCS#1

v1.5
key encryption algorithm [PKCS#1]

[XML_ENC]
7.2 + ++ ++ http://www.w3.org/2001/04/x

mlenc#rsa-1_5
[3]

3 RSAES-
OAEP

key encryption algorithm [PKCS#1]
[XML_ENC]

7.1 ++ +- +- OID: 1.2.840.113549.1.1.7
http://www.w3.org/2001/04/x
mlenc#rsa-oaep-mgf1p

[2]
[3]

[1] S/MIMEv3 requires that sending and receiving agents SHOULD support Diffie-Hellman defined in [RFC 2631], and MUST support
rsaEncryption.

 RSAES-PKCS1-v1_5 is included in [PKCS#1] only for compatibility with existing applications, and is not recommended for new
applications.

 Common PKI Profile: For compatibility reasons, RSAES-PKCS1-v1_5 is the .preferred key encryption algorithm in Common PKI.
[2] [PKCS#1] recommends the use of RSAES-OAEP for new applications, e.g. for wrapping of AES content encryption keys.

Common PKI Profile: Although RSAES-OAEP is considered more secure than rsaEncryption, its use may lead to interoperability problems
due the fact that it is not supported in [RFC 3370] and [RFC 3851]. Therefore it is OPTIONAL.

[3] This is only a requirement for compliant components that support XML.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 17 of 21

Table 6: Key Agreement Algorithms

CRYPTOGRAPHIC ALGORITHMS REFERENCES COMMON PKI SUPPORT

NAME SEMANTICS DOCUMENT CHAPTER STATUS GEN PROC VALUES

NOTES

1 Diffie-
Hellman

key agreement algorithm [XML_ENC]
[RFC2631]

 +- +- http://www.w3.org/2001/04/x
mlenc#dh

[1]

[1] Common PKI Profile: This is only a requirement for compliant components that support XML. Diffie-Hellman key agreement is only
considered in Common PKI for components that support XML.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 18 of 21

Table 7: Subject Public Key Algorithms

CRYPTOGRAPHIC ALGORITHMS REFERENCES COMMON PKI SUPPORT

NAME SEMANTICS DOCUMENT CHAPTER STATUS GEN PROC VALUES

NOTES

1 rsaEncryption RSA keys [RFC3279] 2.3.1 +- ++ ++ OID: 1.2.840.113549.1.1.1
2 dhpublicnumber Diffie-Hellman keys [RFC3279] 2.3.3 +- n. a. n. a. OID: 1.2.840.10046.2.1 [1]
3 dsa DSA signature keys [RFC3279] 2.3.2 +- + ++ OID: 1.2.840.10040.4.1 [2]
4 keyExchangeAlg

orithm
KEA public keys [RFC3279] 2.3.4 +- n. a. n. a. OID: 2.16.840.1.101.2.1.1.22 [3]

5 ecPublicKey ECDSA and ECDH keys [RFC3279]
[X9.62]

2.3.5 +- +- + OID: 1.2.840.10045.2.1 [4]

[1] Common PKI Profile: Diffie-Hellman key agreement [X9.42] is not considered in Common PKI.
[2] DSA is defined in [FIPS 186-2].
[3] Common PKI Profile: KEA key exchange is not considered in Common PKI.
[4] This OID is used in public key certificates for both ECDSA signature keys and ECDH encryption keys.
 Common PKI Profile: This OID can only be used in public key certificates for ECDSA signature keys, since Diffie-Hellman key agreement

[X9.42] is not considered in Common PKI

Common PKI Part 6: Cryptographic Algorithms Version 2.0

Algorithm Support Common PKI Part 6 – Page 19 of 21

Table 8: Message Authentication Algorithms

CRYPTOGRAPHIC ALGORITHMS REFERENCES COMMON PKI SUPPORT

NAME SEMANTICS DOCUMENT CHAPTER STATUS GEN PROC VALUES

NOTES

1 desMAC message authentication algorithm [FIPS 113] +- ++ ++ OID: 1.3.14.3.2.10 [1]
2 hmac-SHA1 message authentication algorithm [RFC2104]

[RFC2202]
[XML_DSIG]

 +- +

-

+

+-

OID: 1.3.6.1.5.5.8.1.2

http://www.w3.org/2000/09/x
mldsig#hmac-sha1

[2]

[3,4]

3 hmac-
SHA256

message authentication algorithm [RFC4231]

[RFC4051]

2.2.2

+- +-

-

+-

+-

OID: 1.2.840.113549.2.9

http://www.w3.org/2001/04/x
mldsig-more#hmac-sha256

[2]

[3,4]

4 hmac-
SHA384

message authentication algorithm [RFC4231]

[RFC4051]

2.2.2

+- +-

-

+-

+-

OID: 1.2.840.113549.2.10

http://www.w3.org/2001/04/x
mldsig-more#hmac-sha384

[2]

[3,4]

5 hmac-
SHA512

message authentication algorithm [RFC4231]

[RFC4051]

2.2.2

+- +-

-

+-

+-

OID: 1.2.840.113549.2.11

http://www.w3.org/2001/04/x
mldsig-more#hmac-sha256

[2]

[3,4]

[1] The DES-MAC uses DES as defined in [FIPS 46-3] and data authentication as defined in [FIPS 113].
[2] The support of other mechanisms, like DES3-MAC is recommended.
[3] This is only a requirement for compliant components that support XML.
[4] In the case of components that support XML, the usage of HMAC is entirely discouraged for the time being. Conforming XML clients

SHOULD NOT make use of HMAC. The reason why we do not exclude the element in this profile is the fact that it is used with good reasons
in [XKMS]. It may happen that in the future XKMS will become important for Common PKI and thus HMAC may return. So leaving it here
will perhaps then make things a little easier.

Common PKI Part 6: Cryptographic Algorithms Version 2.0

References Common PKI Part 6 – Page 20 of 21

References

BNetzA08] Federal Network Agency for Electric ity, Gas, Telecommunications,
Post and Railway: Notification in Accordance with the Electronic
Signatures Act and the Electronic Signatures Ordinance (Overview of
Suitable Algorithms), published in German Federal Gazette
(Bundesanzeiger) No 19, pp 376 of 5 February 2008 (in German)

[FIPS 113] Federal Information Processing Standards (FIPS PUB) 113: Computer
Data Authentication; May 1995

[FIPS 186-2] Federal Information Processing Standards (FIPS PUB) 186: Digital
Signature Standard; January 2000

[FIPS 197] Federal Information Processing Standards (FIPS PUB) 197: Advanced
Encryption Standard; November 2001

[FIPS 46-3] Federal Information Processing Standards (FIPS PUB) 46: Data
Encryption Standard (DES); October 1999

[FIPS 81] National Institute of Standards and Technology (formerly National
Bureau of Standards): DES Modes of Operation. December 1980

[ISO/IEC 10118-3] ISO/IEC 10118-3:2004: IT-Security Techniques Hash Functions Part 3:
Dedicated Hash-Functions

[MTTv2] MailTrusT Version 2, March 1999, TeleTrusT Deutschland e.V.,
www.teletrust.de

[OSCI] OSCI Leitstelle: OSCI Transport, Version 1.2, Bremen, 6. Juni 2002
[PKCS#1] RSA Laboratories, “PKCS #1 v2.1: RSA Cryptography Standard”, June

2002
[PKCS#5] RSA Laboratories, “PKCS #1 v2.1: Password-Based Encryption

Standard,” October 2006
[RFC 1319] Kaliski, B.: The MD2 Message-Digesting Algorithm, April 1992
[RFC 1321] Kaliski, B.: The MD5 Message-Digesting Algorithm, April 1992
[RFC 1423] Balenson D.: Privacy Enhancement for Internet Electronic Mail: Part

III: Algorithms, Modes, and Identifiers, February 1993
[RFC 2104] H. Krawczyk, M. Bellare, R. Canetti: HMAC: Keyed-Hashing for

Message Authentication, February 1997
[RFC 2202] Cheng, P. and R. Glenn, Test Cases for HMAC-MD5 and HMAC-

SHA-1, September 1997
[RFC 2268] Rivest, R., A Description of the RC2 (r) Encryption Algorithm, January

1998
[RFC 2631] Rescorla, E., "Diffie-Hellman Key Agreement Method", June 1999
[RFC 3279] Bassham L., Housley R., Polk W.: Algorithms and Identifiers for the

Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, April 2002

[RFC 3370] R. Housley: Cryptographic Message Syntax (CMS) Algorithms, August
2002

[RFC 3447] J. Jonsson, B. Kaliski: Public-Key Cryptography Standards (PKCS) #1:
RSA Cryptography Specifications Version 2.1, February 2003

Common PKI Part 6: Cryptographic Algorithms Version 2.0

References Common PKI Part 6 – Page 21 of 21

[RFC 3565] J. Schaad: Use of the Advanced Encryption Standard (AES) Encryption
Algorithm in Cryptographic Message Syntax (CMS); July 2003

[RFC 3850] B. Ramsdell: Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Certificate Handling, July 2004

[RFC 3851] B. Ramsdell: Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Message Specification, July 2004

[RFC 3852] R. Housley: Cryptographic Message Syntax (CMS), July 2004[RFC
4051] D. Eastlake 3rd: Additional XML Security Uniform Resource
Identifiers (URIs), April 2005

[RFC 4055] J. Schaad, B. Kaliski and R. Housley: Additional Algorithms and
Identifiers for RSA Cryptography for use in the Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile, June 2005

[RFC 4231] M. Nystrom: Identifiers and Test Vectors for HMAC-SHA-224,
HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512, December
2005

[RFC 5280] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk:
Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, May 2008

[RIPEMD-160] H. Dobbertin, A. Bosselaers und B. Preneel: RIPEMD-160: A
strengthened version of RIPEMD, Fast Software Encryption –
Cambridge Workshop 1996; LNCS, Band 1039, S71 – 82, Springer-
Verlag; April 1996

[SigG01] Law Governing Framework Conditions for Electronic Signatures and
Amending Other Regulations (Gesetz über Rahmenbedingungen für
elektronische Signaturen und zur Änderung weiterer Vorschriften),
Bundesgesetzblatt No. 22, 2001, p. 876,
http://www.bundesnetzagentur.de/media/archive/3612.pdf

[X9.17] American National Standard X9.17:1985: Financial Institution Key
Management (Wholesale)

[X9.42] American National Standard X9.42:2003: Public Key Cryptography for
the Financial Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography

[X9.52] American National Standard X9.52:1998: Triple Data Encryption
Algorithm Modes of Operation. 1998

[X9.62] American National Standard X9.62:2005: Public Key Cryptography for
the Financial Services Industry, The Elliptic Curve Digital Signature
Algorithm (ECDSA)

[XML_DSIG] W3C: XML Signature Syntax and Processing (Second Edition) , 10 June 2008,
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/

[XMLDSIG-PSS] K. Lanz, D. Bratko and P. Lipp: RSA-PSS in XMLDSig, 25 September 2007,
http://www.w3.org/2007/xmlsec/ws/papers/08-lanz-iaik/

[XML_ENC] W3C: „XML Encryption Syntax and Processing“, 10 December 2002,
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

COMMON PKI SPECIFICATIONS
FOR INTEROPERABLE APPLICATIONS

FROM T7 & TELETRUST

 SPECIFICATION

PART 7

SIGNATURE API

VERSION 2.0 – 20 JANUARY 2009

Common PKI Part 7: Signature API Version 2.0

Contact Information Common PKI Part 7 – Page 2 of 83

Contact Information

The up-to-date version of the Common PKI specification can be downloaded from
www.common-pki.org or from www.common-pki.de

Please send comments and questions to common-pki@common-pki.org.

Editors of Common PKI specifications:

Hans-Joachim Bickenbach

Jürgen Brauckmann

Alfred Giessler

Tamás Horváth

Hans-Joachim Knobloch

© T7 e.V. and TeleTrusT e.V., 2008-2009

Common PKI Part 7: Signature API Version 2.0

Document History Common PKI Part 7 – Page 3 of 83

Document History

VERSION DATE CHANGES

2.0
20/Jan/2009

Complete rewrite of the previously PKCS#11 based Part 7 of ISIS-MTT 1.1.

Common PKI Part 7: Signature API Version 2.0

Table of Content s Common PKI Part 7 – Page 4 of 83

Table of Contents

1 Preface...5

2 General Mechanisms and Data Structures..6

2.1 Architecture ..6

2.2 Card Info Files..6

2.3 Bindings ...7

2.4 XML Schemas and Namespaces ...7

3 API Functions..9

3.1 General Request and Response Data Structures...9

3.2 Application Level Functions ..13

3.3 Card and Reader Service Level Functions ..41

Annexes...60

Annex A: C/C++ Binding ..60

Annex B: Java Binding ..65

Annex C: Schema for Card Information Files..73

References...81

Common PKI Part 7: Signature API Version 2.0

Preface Common PKI Part 7 – Page 5 of 83

1 Preface

This part of the Common PKI specification defines a profile of the eCard API framework
(BSI Technische Richtlinie TR-03112 as defined in the seven documents [TR-03112-1] to
[TR03112-7]) that is specified for use in German governmental smart card applications. The
eCard API is in turn mainly based on international standards, in particular [SOAP],
[OASIS-DSS], [ISO24727-3], [XAdES] and [CAdES].

The eCard API defines Interfaces on three different layers as seen in Figure 1. The API profile
specified in this document summarizes the high- level signature, verification, encryption an
decryption functions with the necessary management and lower- level functions that a generic
smart card application SHOULD call to provide signature and/or encryption functionality
based on Common PKI message formats.

In other terms, an implementation of the API framework MUST at least provide these
functions to the amount specified in this document. Of course it MAY implement the full
extent of the eCard PKI framework.

This document contains the following sections:
• Chapter 2 specifies general mechanisms and data types of the API

• Chapter 3 lists the required API functions

• Annex A provides a header file for a C/C++ binding of the API

• Annex B provides a package definition for a Java binding of the API

• Annex C provides an extended (w.r.t. [TR-03112-4]) schema for Card Information Files

• References to the standards on which this part of Common PKI is based.

Common PKI Part 7: Signature API Version 2.0

General Mechanisms and Data Structures Common PKI Part 7 – Page 6 of 83

2 General Mechanisms and Data Structures

2.1 Architecture

Figure 1 illustrates the general architecture of the eCard API framework as defined in [TR-
03112-1]. Note that a PKI application may directly access the API interfaces of any of the
three layers below.

Terminal
Layer

Service
Access
Layer

Identity
Layer

Application
Layer

IFD-Interface

ISO24727-3-Interface Support -Interface

Mgmt-Interface eCard-Interface

Signature Services Encryption ServicesManagement
Services

Support ServicesGeneric Card Services

Card Interface Devices

PKI Applications

Figure 1: Architecture of the eCard API according to [TR-03112-1] (simplified)

At each of the five API interfaces, a Web service interface is to be provided. These Web
service interfaces are in main parts identical to the Web services defined by [OASIS-DSS],
[OASIS-EP] [ISO24727-3] and [ISO24727-4], amended by some management and support
functions.

2.2 Card Info Files

In order to support specific card types on the ISO 24727 Service Interface [ISO24727-3]
without the need to implement a card type specific code on top of the Generic Card Interface
[ISO24727-2], the eCard API Framework employs the mechanism of Card Info files (CIFs).
A CIF contains a signed XML CardInfo structure that defines the mapping of generic
ISO 24727 Service Interface function calls to card type specific application protocol data
units (APDUs) as well as the means to recognize the respective card type by the card’s answer
to reset (ATR, for contact cards) or answer to select (ATS, for contactless cards) and other
information.
The XML CardInfo structure is defined in Annex A of [TR-03112-4]. That structure needs

Common PKI Part 7: Signature API Version 2.0

General Mechanisms and Data Structures Common PKI Part 7 – Page 7 of 83

some amendments to be appropriate for the purposes of this Common PKI profile. Currently,
there are efforts to integrate an appropriate CardInfo schema in an upcoming international
standard via CEN. Future versions of this Common PKI specification will reference that
schema in the international standard once it is finalized. For the time being, apreliminary
redefinition of the CardInfo schema of [TR-03112-4] that is appropriate for the purposes of
this profile is given in Annex C.
For the purpose of this Common PKI profile, an application MAY handle the CardInfo
structure as an opaque data block, whereas clearly an implementation framework MUST be
able to verify and use the content of a CIF.

2.3 Bindings

In implementation of the API specified MUST support a tightly coupled binding of the Web
service functions via direct calls in the C/C++ or Java programming language. In this binding,
the XML input/output data structures are not translated to the respective language-specific
data type definitions, but rather the XML data are directly passed to wrapper functions in
form of C unsigned char arrays resp. Java input/output streams.
At least one of the bindings as specified in Annex A (C/C++) and Annex B (Java) MUST be
implemented, both SHOULD be implemented.
In addition, any other binding required by [TR-03112-1] such as the loosely coupled SOAP
binding via HTTP (specified by [SOAPv11]) MAY also be implemented.

2.4 XML Schemas and Namespaces

The XML data type definitions in chapter 3 are based on the XML schemas shown in Table 1.

Table 1: XML Schemas and Namespaces

XML DATA
FORMAT

NAMESPACE COMMON
PREFIX

REFERENCES NO
TES

1 XML Schema http://www.w3.org/2001/XMLSchema xs
xsd

[XMLSchema]

2 WSDL v1.1 http://schemas.xmlsoap.org/wsdl/ wsdl [WSDLv1.1]

3 SOAP v 1.1 http://schemas.xmlsoap.org/wsdl/soap/ soap [SOAPv1.1]

4 SAML v1.0 urn:oasis:names:tc:SAML:1.0:assertion saml [OASIS-SAML]

5 XMLDSig http://www.w3.org/2000/09/xmldsig# ds [XMLDSig]

6 XMLEnc http://www.w3.org/2001/04/xmlenc# xenc [XMLEnc]

7 XAdES v1.2.2 http://uri.etsi.org/01903/v1.2.2# XAdES [XAdES]

8 Trust Service
Provider status
information

http://uri.etsi.org/02231/v2# tsl [TS-102231] [1]

9 OASIS DSS Core
v1.0

urn:oasis:names:tc:dss:1.0:core:schema dss [OASIS-DSS]

10 OASIS Advances
Electronic Signature
Profiles of DSS
v1.0

urn:oasis:names:tc:dss:1.0:profiles:Ad
ES:schema#

 [OASIS-AdES]

11 OASIS DSS
Encryption Profile
v0.2 (Draft)

urn:oasis:names:tc:dss:1.0:profiles:en
cryption:schema#

dsse [OASIS-EP]

Common PKI Part 7: Signature API Version 2.0

General Mechanisms and Data Structures Common PKI Part 7 – Page 8 of 83

12 ISO 24727 Web
Service Binding

urn:iso:std:iso-iec:24727:tech:schema iso [ISO24727-3]
[ISO24727-4]
[TR-03112-4]

[2]

13 ISO 24727
IFD-API Web
Service Binding

http://www.iso.org/24727 ec [ISO24727-4] [3]

14 OASIS DSS
Verification Report
v0.2 (Draft)

urn:oasis:names:tc:dss:1.0:profiles:ve
rificationreport:schema#

vr [OASIS-VR]
[TR-03112-2]

[4]

15 eCard API
data structures,

http://www.bsi.bund.de/ecard/api/1.0 ec [TR-03112-2]
[TR-03112-3]
[TR-03112-5]
[TR-03112-7]

[5]

16 Common PKI 2.0
Signature API

http://www.common-
pki.org/xmlns/2.0/SignatureAPI/

cpsa [6]

[1] Available as file draft_ts102231v020101xsd.xsd from
http://www.bsi.bund.de/literat/tr/tr03112/api/1.0/wsdl.zip

[2] Available as files ISOCo mmon.xsd, ISO24727-3.xsd, ISO24727-3-Protocols.xsd, ISOIFD.xsd,
ISOIFDCallback.xsd and CardInfo.xsd from http://www.bsi.bund.de/literat/tr/tr03112/api/1.0/wsdl.zip

[3] Available as files ISOCommon.xsd and ISOIFD.xsd in Annex B of [ISO24727-4]

[4] Available as file VerificationReport.xsd from http://www.bsi.bund.de/literat/tr/tr03112/api/1.0/wsdl.zip

[5] Available as files eCard.xsd, eCard-Protocols.xsd, Support.xsd and Management.xsd from
http://www.bsi.bund.de/literat/tr/tr03112/api/1.0/wsdl.zip

[6] That namespace and prefix is used for schemas defined by or adapted to this Common PKI specification.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 9 of 83

3 API Functions

3.1 General Request and Response Data Structures

Table 2: RequestType

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <complexType name="RequestType">
 <complexContent>

Generic Web service request data structure for
the API framework.

++ ++ [ISO24727-3]
[TR-03112-1]
4.1.1

 [1]

2 <restriction base="dss:RequestBaseType">
 </restriction>

Based on the OASIS Digital Signature Service
RequestBaseType.

 [OASIS-DSS] #4

3 </complexContent>
</complexType>

4 <complexType name="RequestBaseType">
 <sequence>

 [OASIS-DSS]

5 <element ref="dss:OptionalInputs" minOccurs="0"/> Optional input parameters to a specific function
request.

+- ++

6 <element ref="dss:InputDocuments" minOccurs="0"/> OPTIONAL Input documents. +- ++ T3

7 </sequence>
 <attribute name="RequestID" type=„string"
use="optional"/>
 <attribute name="Profile" type=„anyURI"
use="optional"/>
</complexType>

[1] Common PKI Profile: Generation requirements pertain to an application calling the API framework. Processing requirements pertain to the API Framework called by an
application.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 10 of 83

Table 3: InputDocuments

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="InputDocuments">
 <complexType>
 <sequence>
 <choice maxOccurs="unbounded">

Generic input documents to an API function
call.

 [OASIS-DSS]

2 <element ref="dss:Document"/> +- ++

3 <element ref="dss:TransformedData"/> +- ++

4 <element ref="dss:DocumentHash"/> +- ++ [2]

5 <element name=”Other” type=”dss:AnyType”/> +- ++ [1]

6 </choice>
 </sequence>
 </complexType>
</element>

[1] [TR-03112-2]: Possible Other document types are dsse:StructuredDataType and dsse:OpaqueDataType.

[2] [TR-03112-2]:In a SignRequest, his option MAY only be used for the request of time stamps.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 11 of 83

Table 4: ResponseType

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <complexType name="ResponseType">
 <complexContent>

Generic Web service response data structure for
the API framework.

++ ++ [ISO24727-3]
[TR-03112-1]
4.1.2

 [1]
[2]

2 <restriction base="dss:ResponseBaseType">
 <sequence>

Based on the OASIS Digital Signature Service
ResponseBaseType.

 [OASIS-DSS]

3 <element ref="dss:Result"/> Result of the API function call. ++ ++ [OASIS-DSS] T5

4 </sequence>
 </restriction>
 </complexContent>
</complexType>

[1] Common PKI Profile: Generation requirements pertain to the API Framework called by an application. Processing requirements pertain to an application calling the API
framework.

[2] [TR-03112-1]: This restricted ResponseType is used for all functions of the API framework with the exception of OASIS DSS compliant functions of the application
level eCard interface, which use the original dss:ResponseBaseType .

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 12 of 83

Table 5: Result

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="Result">
 <complexType>
 <sequence>

Generic result code of an API function call . [OASIS-DSS]
[TR-03112-1]
4.1.2

2 <element name="ResultMajor" type=„anyURI"/> Major result code indicating general success or
failure.

++ ++ [1]

3 <element name="ResultMinor" type=„anyURI"
minOccurs="0"/>

OPTIONAL minor result code indicating details
on failure reasons or further information.

+- + [2]

4 <element name="ResultMessage"
type="dss:InternationalStringType" minOccurs="0"/>

OPTIONAL further result code URIs or human-
readable message.

+- +

5 </sequence>
 </complexType>
</element>

[1] [TR-03112-1]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#warning

[2] [TR-03112-1]: ResultMinor MUST be included if ResultMajor code is #error or #warning .

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 13 of 83

3.2 Application Level Functions

Table 6: InitializeFramework

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="InitializeFramework"
type="iso:RequestType"/>

Function call without input parameters ++ ++ [TR-03112-3]
3.1.1

T2 [1]

2 <element name="InitializeFrameworkResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">
 <sequence>

Function output including mandatory result data
structure.

++ ++ T4, T5 [2]

3 <element name="Version" maxOccurs="1"
minOccurs="1">
 <complexType>
 <sequence>

Version number of the API framework started.

4 <element name="Major" type="integer"/> Major version number. ++ + [3]

5 <element name="Minor" type="integer"
maxOccurs="1" minOccurs="0"/>

Minor version number. ++
(TR:
+-)

+ [3]

6 <element name="SubMinor"
type="integer" maxOccurs="1" minOccurs="0"/>

Sub version number below minor version. ++
(TR:
+-)

+ [3]

7 </sequence>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

[1] [TR-03112-3] semantics is: Initialize the API framework including lower level API interfaces. MUST be the first API function called.
[2] [TR-03112-3]: Possible major and minor result codes are:

http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#ParameterError

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 14 of 83

[3] Common PKI Profile: The application calling the framework SHOULD check whether the version of the API framework. is acceptable.

Table 7: TerminateFramework

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="TerminateFramework"
type="iso:RequestType"/>

Function call without input parameters. + ++ [TR-03112-3]
3.1.2

T2 [1]

2 <element name="TerminateFrameworkResponse"
type="iso:ResponseType"/>

Function output including mandatory result data
structure.

++ + T4, T5 [2]

[1] [TR-03112-3] semantics is: Terminate the current session between application and API framework interfaces. The only API function that MAY be called after
TerminateFramework is another InitializeFramework..

[2] [TR-03112-3]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#warning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#ParameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#sessionTerminatedWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#notInitialized

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 15 of 83

Table 8: SignRequest

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="SignRequest"
type="dss:RequestBaseType"></element>

Function call with input parameters. +- ++ [OASIS-DSS]

[OASIS-AdES]

[OASIS-SigG]

[TR-03112-2]
3.2.1

T2, T3 [1]
[2]
[3]

2 <element name="SignRequestInput"
type="ec:SignRequestInputType"/>
 <complexType name="SignRequestInputType">
 <sequence>

Optional input parameters to SignRequest. ++ ++ T2

3 <element name="ConnectionHandle"
 type="iso:ConnectionHandleType" maxOccurs="1"
minOccurs="1"/>

Reference to a connected card application. ++ ++ [ISO24727-3]

[TR-03112-4]
3.2.1

T26#5 [10]

4 <element name="KeySelector"
type="ec:KeySelectorType"
 maxOccurs="1" minOccurs="0"/>

OPTIONAL reference to cryptographic key and
associated algorithm. Default is to use standard
key and algorithm for encryption.

+- ++ #25

5 <choice>
 <element name="SignaturePolicy"
type="anyURI"/>

Reference to a signature policy. +- +- [4]

6 <element name="SignOptions"
type="ec:SignOptionsType" maxOccurs="1"
minOccurs="1"/>
 </choice>

Explicit options for signature generation. +- ++ #8

7 </sequence>
 </complexType>

8 <complexType name="SignOptionsType">
 <sequence>

9 <element name="SignatureForm" type="anyURI"
maxOccurs="1" minOccurs="0"/>

OPTIONAL reference to a particular XAdES or
CAdES signature form, which is to be
generated.

+- ++ [OASIS-AdES] [5]

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 16 of 83

10 <element name="SignatureType" type="anyURI"
maxOccurs="1" minOccurs="0"/>

OPTIONAL reference to a particular signature
or time stamp message format, which is to be
generated.

+- ++ [6]

11 <element ref="dss:Properties" maxOccurs="1"
minOccurs="0"/>

OPTIONAL instructions to embed particular
signed on unsigned attributes in the signature to
be generated.

+- ++ [OASIS-DSS]

[OASIS-AdES]

 [7]

12 <element name="IncludeEContent" type="boolean"
maxOccurs="1" minOccurs="0"/>

TRUE for enveloping signatures. FALSE for
detached signatures. Ignored, if given, for
timestamps.

+- ++

13 <element ref="dss:IncludeObject"
maxOccurs="unbounded" minOccurs="0"/>

OPTIONAL list of objects to be included in an
XML signature. Default is to sing the complete
XML document.

+- ++ [OASIS-DSS]

14 <element ref="dss:SignaturePlacement"
maxOccurs="1" minOccurs="0"/>

OPTIONAL instruction where to place the
signature element in a signed XML
document. Default is a new node at the end of
the XML document.

+- ++ [OASIS-DSS]

15 <element ref="dss:Schemas" maxOccurs="1"
minOccurs="0"></element>

OPTIONAL set of XML schemas to be applied
for validation of an XML form input document.
Default is to use the configured standard
schemas.

+- ++ [OASIS-DSS]

16 <element name="TrustedViewerInfo"
type="ec:TrustedViewerInfoType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL instruction to show the document
to be signed in a trusted viewer before the
signature is generated. Default is to skip the
trusted viewer.

+- ++ #19

[3]

17 </sequence>
 </complexType>

18 <element name="PreviousTimeStampHash"
 type="XAdES:DigestAlgAndValueType"/>

Data element for the previous timestamp hash
signed attribute.

+- ++ [7]

19 <complexType name="TrustedViewerInfoType">
 <sequence>

20 <element name="TrustedViewerId"
type="ec:TrustedViewerIdType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL reference to a trusted viewer.
Default is to use the configured standard trusted
viewer.

-
(TR:
+-)

+-
(TR:
++)

 [9]

21 <element name="StyleSheet"
type="ec:StyleSheetType" maxOccurs="1" minOccurs="0"/>

OPTIONAL style sheet for visualization of an
XML document.

+- ++ #24

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 17 of 83

22 <element name="IncludeViewerManifest"
type="boolean" maxOccurs="1" minOccurs="0"/>

OPTIONAL instruction whether to embed a
reference to the style sheet in the signature
manifest of XML signatures. Default is to
embed the information for XML signatures and
to omit such information for CMS signatures.

+- ++

23 </sequence>
 </complexType>

24 <complexType name="StyleSheetType">
 <simpleContent>
 <extension base="base64Binary">
 <attribute name="StyleSheetId" type="anyURI"
use="optional"/>
 </extension>
 </simpleContent>
 </complexType>

Reference to a style sheet.

25 <complexType name="KeySelectorType">
 <sequence>

Reference to cryptographic key and associated
algorithm.

+- ++

26 <choice>
 <element ref="ds:KeyInfo"></element>

 [XMLDsig] [8]

27 <sequence>
 <element name="DIDName"
type="iso:DIDNameType" maxOccurs="1" minOccurs="1"/>

Name of a Differential-Identity (DID) in the
card application referenced by the
ConnectionHandle element.

+- ++

28 <element name="DIDScope"
type="iso:DIDScopeType" maxOccurs="1" minOccurs="0"/>
 </sequence>

OPTIONAL parameter to uniquely identify a
DID. MAY be omitted if DIDName is already
unique.

+- ++

29 </choice>
 <choice maxOccurs="1" minOccurs="0">

30 <element name="SignInfo"
type="iso:SignInfoType" maxOccurs="1" minOccurs="1"/>

OPTIONAL reference to a particular signature
algorithm or associated card command.

+- ++

31 <element name="EncryptionMethod"
type="xenc:EncryptionMethodType"/>

OPTIONAL reference to a particular key
ancryption algorithm and associated parameters.

+- ++ [XMLEnc]

32 </choice>
 </sequence>
 </complexType>

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 18 of 83

33 <element name="SignResponse">
 <complexType>
 <complexContent>
 <extension base="dss:ResponseBaseType">
 <sequence>

Function output including mandatory result data
structure.

+- ++ [OASIS-DSS]

[TR-03112-2]
3.2.1

T5 [11]
[12]

34 <element ref="dss:SignatureObject"
minOccurs="0" maxOccurs="unbounded"/>

Signatures or timestamps, if successfully
generated

++ + [OASIS-DSS] [13]

35 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>

[1] [TR-03112-2] semantics is: Generate electronic signatures for the input documents.

Common PKI Profile: The generated signatures can be qualified or advanced electronic signatures according to Common PKI Parts 1 to 8 or qualified electronic
sighnatures according to Common PKI part 9 (SigG Profile).

[2] [TR-03112-2]: Input documents are to be passed as elements of type dss:Document. Additionally input document type dss:DocumentHash MAY be used for
generating timestamps. Other forms of input documents MUST NOT be used.

Common PKI Profile: Large amounts of data (e. g. digital images) to be signed MAY be passed to the API function in form of a file by using the
dss:AttachmentReference variant of dss:Document .

[3] Common PKI Profile: If there are multiple input documents given for batch processing and one of these documents cannot be processed as requested, the whole batch is
to be discarded. If display by a trusted viewer has been selected by the application but one of multiple documents in a batch cannot be displayed by the selected viewer
(e. g. due to an unsupported document type), the whole batch has to be discarded, too.

[4] [TR-03112-2]: An implementation of the API framework MAY support specific predefined signature policies.

Common PKI Profile: Signature Policies MAY be supported. If an implementation of the API framework chooses to support signature policies, they MUST be specified
in detail in the accompanying documentation. Signature policies MUST be compliant with all requirements and restrictions of the Common PKI profile.

[5] Common PKI Profile: The signature forms urn:oasis:names:tc:dss:1.0:profiles:AdES:forms:BES and urn:oasis:names:tc:dss:1.0:
profiles:AdES:forms:ES-T MUST be supported by an implementation of the API framework. Other signature forms MAY be supported. Unsupported signature
form URIs will lead to the result code /resultminor/il/signature#unknownSignatureForm.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 19 of 83

[6] [TR-03112-2]: Permitted URIs are:

urn:ietf:rfc:3275 for XML-DSig (optionally XAdES) signatures

urn:ietf:rfc:3369 for CMS (optionally CAdES) signatures

http://ns.adobe.com/pdf for PDF signatures

urn:ietf:rfc:3161 for timestamps according to [RFC3161]

urn:oasis:names:tc:dss:1.0:core: schema:XMLTimeStampToken for XML timestamps

urn:ietf:rfc:4998 for archive timestamps according to [RFC4998]

Common PKI Profile: XML-DSig/XAdES signatures according to the profile specified in Common PKI Part 8, CMS/CAdES signatures according to the profile specified
in Common PKI Part 3 or RFC 3161 timestamps according to the profile specified in Common PKI Part 4 MUST be supported. PDF-signatures SHOULD be supported..
Other signature types MUST NOT be used and MUST lead to the result code /resultminor/il/signature#signatureFormatNotSupported.

[7] [TR-03112-2]: In addition to the respective URIs specified in [OASIS-AdES], the URI http://www.bsi.bund.de/ecard/api/1.0/properties/
previousTimeStampHash MAY be used to embed the hash value on the Signature respectively TimeStampToken element of previously generated timestamp
as assigned attribute.

This feature can be employed by an application to provide evidence that the signature in question has been generated after the point of time indicated by that particular
timestamp.

Common PKI Profile: Support for the signed attribute urn:oasis:names:tc:dss:1.0:profiles:XAdES:SigningDataObjectProperties is not
required. All other signed aattributes defined in [OASIS-AdES] and [TR-03112-2] MUST be supported by an implementation of the API framework.

Common PKI Profile: The timestamp to be used in PreviousTimeStampHash must be an RFC 3161 timestamp compliant with the profiling in Common PKI Part 4.

[8] Common PKI Profile: Only X.509v3 public key certificates compliant with the Common PKI Part 1 or Part 9 (SigG Profile) and only signature algorithms compliant with
Common PKI Part 6 MUST be used in KeyInfo elements.

[9] [TR-03112-2]: TrustedViewerId is defined with minOccurs="1".

Common PKI Profile: The verbal description in [TR-03112-2] clearly states that this element is optional, hence minOccurs="0". is considered a corrigendum.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 20 of 83

[10] According to [TR-03112-4] the ConnectionHandle is obtained by a call to the CardApplicationConnect function.

Common PKI Profile: Using the functions defined in this profile, the ConnectionHandle can be constructed as follows:

 PathSecurity MUST be omitted.

 ChannelHandle MUST be omitted.

 ContextHandle SHOULD be omitted or otherwise left empty, see T20.[2].

 IFDName can be obtained by a call to the ListIFDs function.

 SlotIndex: can be obtained by a call to the GetStatus function

 CardApplicationIdentifier can be omitted to reference the alpha card application by default.

 CardHandle can be obtained by a call to the Connect function.

 RecognitionInfo can be omitted.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 21 of 83

[11] [TR-03112-2]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#warning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#communicationError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#trustedChannelEstablishmentFailed
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownProtocol
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownWebserviceBinding
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownDIDName
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownDataSetName
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownDSIName
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#unknownSignaturePolicy
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#signatureFormatNotSupported
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#PDFSignatureForNonPDFDocument
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#unableToIncludeEContent
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#ignoredSignaturePlacementFlag
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificateNotFound
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/service#timeStampServiceUnreachable
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#resolutionOfObjectReferenceImpossible
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#transformationAlgorithmNotSupported
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#unknownViewer
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#signatureTypeDoesNotSupportSignatureFormClarificationWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#unknownSignatureForm
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#includeObjectOnlyForXMLSignatureAllowed
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/algorithm#hashAlgorithmNotSupported
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/algorithm#signatureAlgorithmNotSupported
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#securityConditionsNotSatisfied
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/terminal#noCard

[12] [TR-03112-2]: Enveloped XML signatures or PDF documents with embedded signatures MAY be returned as OPTIONALOutputs element of type
dss:DocumentWithSignature.

[13] [TR-03112-2]: XML-DSig/XAdES signatures are returned in form of a ds:Signature element. CMS/CAdES signatures are returned in form of a
dss:Base64Signature. RFC 3161 timestamps are returned in form of a RFC3161timeStampToken element of a dss:TimeStamp.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 22 of 83

Table 9: VerifyRequest

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="VerifyRequest">
 <complexType>
 <complexContent>
 <extension base="dss:RequestBaseType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-2]
3.2.2

T2 [1]
[2]
[3]

2 <element ref="dss:SignatureObject"
maxOccurs="unbounded" minOccurs="0"/>

Signatures and timestamps to verify. ++ ++ [OASIS-DSS] [3]
[4]

3 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

4 <element name="VerifyRequestInput"
type="ec:VerifyRequestInputType"/>
 <complexType name="VerifyRequestInputType">
 <sequence>

Optional input parameters to
VerifyRequest.

++ ++ T2

5 <element name="ChannelHandle"
type="iso:ChannelHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL parameter for addressing remote
systems. Default is addressing local system.

--
(TR
+-)

+-
(TR
++)

[TR-03112-4]
3.1.3

6 <choice>
 <element name="SignaturePolicy"
type="anyURI"/>

Reference to a signature policy. +- ++ T8#5

7 <element name="VerifyOptions"
type="ec:VerifyOptionsType" maxOccurs="1"
minOccurs="0"/>
 </choice>

OPTIONAL explicit options for signature
verification. Default are the configured standard
options.

+- ++ #10 [5]

8 <element ref="dss:AdditionalKeyInfo"
maxOccurs="1" minOccurs="0"/>

OPTIONAL further certificates required for
signature verification.

+- ++ [OASIS-DSS]

9 </sequence>
 </complexType>

10 <complexType name="VerifyOptionsType">
 <sequence>

11 <element name="UseVerificationTime"
type="dss:UseVerificationTimeType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL point of time that serves as
reference time for the verification process.

+- ++ [OASIS-DSS] [6]

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 23 of 83

12 <element name=”ReturnOptions” maxOccurs=”1”
minOccurs=”0”>
 <complexType>
 <sequence>

OPTIONAL instructions whether the signature
to be verified is to be amended by particular
unsigned attributes and/or which information is
to be included in the verification report. Default
are the configured standard options.

+- ++

13 <element ref=”dss:ReturnUpdatedSignature”
maxOccurs=”1” minOccurs=”0”/>

Instructions how the signature to be verified is
to be amended by particular unsigned attributes.

+- ++ [OASIS-DSS]

[OASIS-AdES]

14 <element name=”ReportOptions”
maxOccurs=”1” minOccurs=”0”
type=”vr:ReportOptionsType”/>

Instructions, which information is to be included
in the verification report.

+- ++ [OASIS-VR]

15 </sequence>
 </complexType>
 </element>

16 <element name=”CheckOptions” maxOccurs=”1”
minOccurs=”0” type=”vr:CheckOptionsType”/>

OPTIONAL instructions which verification step
are to be performed. Default are the configured
standard options.

+- ++ [OASIS-VR]

17 <element name=”SignVerificationReport”
type=”anyURI” maxOccurs=”1” minOccurs=”0”/>

OPTIONAL instruction whether the verification
report is to be protected by a signature or
timestamp of a certain SignatureType.
Default is not to sign the verification report.

+- ++ [OASIS-VR] T8#10 [7]

18 <element name=”TrustedViewerInfo”
type=”ec:TrustedViewerInfoType” maxOccurs=”1”
minOccurs=”0”/>

OPTIONAL instruction to show the document
to verification result in a trusted. Default is to
skip the trusted viewer.

+- ++ T8#19 [3]

19 </sequence>
 </complexType>

20 <element name=”VerifyResponse”
type=”dss:ResponseBaseType”/>

Function output including mandatory result data
structure.

++ + [OASIS-DSS]

[TR-03112-2]
3.2.2

T5 [8]

21 <complexType name=”VerifyRequestOutputType”>
 <sequence>

Optional output parameters to
VerifyRequest.

++ + [TR-03112-2]
3.2.2

22 <element ref=”dss:DocumentWithSignature”
maxOccurs=”unbounded” minOccurs=”0”/>

OPTIONAL documents with embedded
signatures, amended by unsigned signature
attributes if such an amendment was requested.

+- + [OASIS-DSS]

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 24 of 83

23 <element ref=”dss:UpdatedSignature”
maxOccurs=”unbounded” minOccurs=”0”/>

OPTIONAL signatures, amended by unsigned
signature attributes if such an amendment was
requested.

+- + [OASIS-DSS]

24 <element name=”VerificationReport”
type=”vr:VerificationReportType” maxOccurs=”1”
minOccurs=”0”/>

OPTIONAL verification report if requested. +- + [OASIS-VR] [9]

25 <element ref=”dss:SignatureObject” maxOccurs=”1”
minOccurs=”0”/>

OPTIONAL signature or timestamp on the
verification report if requested.

+- + [OASIS-DSS]

26 </sequence>
 </complexType>

[1] [TR-03112-2] semantics is: Verify signed objects (document signatures, timestamps, certificates etc.). Depending on the VerifyOptions input parameter, a partial
result pertaining to certain verification steps MAY be returned.

[2] [TR-03112-2]: Documents required to verify signatures or timestamps MAY be passed to the API function as InputDocuments element if they are not part of
dss:SignatureObject.

Common PKI Profile: Large amounts of signed data (e. g. digital images) to be used for verification MAY be passed to the API function in form of a file by using the
dss:AttachmentReference variant of dss:Document .

[3] Common PKI Profile: If there are multiple input documents given for batch processing and one of these documents cannot be processed as requested, the whole batch is
to be discarded. If display by a trusted viewer has been selected by the application but one of multiple documents in a batch cannot be displayed by the selected viewer
(e. g. due to an unsupported document type), the whole batch has to be discarded, too.

[4] [TR-03112-2]: Other PKI data structures such as public key certificates, attribute certificates, CRLs or OCSP responses MAY be verified using the VerifyRequest API
function by embedding them in the appropriate data element within a “dummy” XAdES signature.

[5] [TR-03112-2]: This element is defined with minOccurs="1".

Common PKI Profile: The verbal description in [TR-03112-2] clearly states that this element is optional, hence minOccurs="0" is considered a corrigendum.

[6] [TR-03112-2]: If is UseVerificationTime omitted the API framework MUST determine the reference time for verification by an available time stamp or other
trustworthy indication of the signature generation time. In absence of such a trustworthy time indication, the current time of verification MUST be used as reference time.
In the latter case, a trustworthy timestamp or other time indication must be amended to the verification data so that a subsequent verification processes will end up with the
same result.

[7] Common PKI Profile: The same restrictions as for the SignatureType element in a SignRequest (T8.[5]) apply.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 25 of 83

[8] [TR-03112-2]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#warning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#communicationError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#trustedChannelEstablishmentFailed
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownProtocol
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownWebserviceBinding
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownDataSetName
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownDSIName
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificateNotFound
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificateFormatNotCorrectWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#invalidCertificateReference
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificateChainInterrupted
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#resolutionOfObjectReferenceImpossible
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#transformationAlgorithmNotSupported
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#unknownViewer
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificatePathNotValidatedWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificateStatusNotCheckedWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#signatureManifestNotCheckedWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#suitabilityOfAlgorithmsNotCheckedWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#detachedSignatureWithoutEContent
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#improperRevocationInformationWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#SignatureManifestNotCorrect
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/algorithm#hashAlgorithmNotSupported
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/algorithm#signatureAlgorithmNotSupported
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#signatureAlgorithmNotSuitable
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#hashAlgorithmNotSuitable
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#securityConditionsNotSatisfied

[9] Common PKI Profile: The same restrictions as for the signed properties associated with the Properties element in a SignRequest (T8.[6]) apply to the
SignedProperties element in the verification report.

Common PKI Profile: The verification report MUST indicate which validation model (the PKIX model according to Common PKI Part 5 or the SigG model according to
Common PKI Part 9) was used in the verification process.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 26 of 83

Table 10: EncryptRequest

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="EncryptRequest"
type="dsse:EncryptRequestType"/>

Function call with input parameters. +- ++ [OASIS-EP]

[TR-03112-2]
3.3.1

T2, T3 [1]
[2]
[3]

2 <complexType name="EncryptionRequestInputType">
 <sequence>

Optional input parameters to
EncryptRequest.

+- ++

3 <element name="ConnectionHandle"
type="iso:ConnectionHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL reference to a connected card
application.

--
(TR
+-)

+ [ISO24727-3]

[TR-03112-4]
3.2,1

T26#5,

T8.[10]

[4]

4 <element name="KeySelector"
type="ec:KeySelectorType" maxOccurs="1"
minOccurs="0"></element>

OPTIONAL reference to cryptographic key and
associated algorithm. Default is to use standard
key and algorithm for encryption.

--
(TR
+-)

+ T8#25 [4]

5 <element name="encryptionMethod"
type="xenc:EncryptionMethodType" minOccurs="0" />

OPTIONAL reference to an encryption method
to be used.

+-
(TR
--)

++ [5]

6 <element name="RecipientCertificate"
type="ds:X509DataType" maxOccurs="unbounded"
minOccurs="0" />

Encryption certificate(s) of one or more
intended recipients.

++
(TR
--)

++ [5]

7 </sequence>
 </complexType>

8 <element name="EncryptResponse"
type="dsse:EncryptResponseType"/>

Function output including mandatory result data
structure.

++ + [OASIS-EP]

[TR-03112-2]
3.3.1

T5 [6]

9 <complexType name=”EncryptResponseType”>
 <complexContent>
 <extension base= »dss :ResponseBaseType »>
 <sequence>
 </sequence>

 ++ + [OASIS-EP]

 [7]

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 27 of 83

10 <element name=”OutputDocuments”>
 <complexType>
 <sequence maxOccurs=”unbounded”>
 <element ref= »dss :Document »/>
 </sequence>
 </complexType>
 </element>

Encrypted output documents, if encryption was
successful.

+- + [OASIS-EP]

[OASIS-DSS]

T3 [8]

11 </extension>
 </complexContent>
</complexType>

[1] [TR-03112-2] semantics is: Encrypt the input documents.
[2] [TR-03112-2], [OASIS-EP]: Input documents of type dss:Document are to be encrypted as a whole.

Common PKI Profile: For XML input documents, the encrypted message format MUST be XML-Enc according to the profile specified in Common PKI Part 8. For non-
XML input documents, the encrypted message format MUST be CMS according to the profile specified in Common PKI Part 3.

Common PKI Profile: Large amounts of data (e. g. digital images) to be encrypted MAY be passed to the API function in form of a file by using the
dss:AttachmentReference variant of dss:Document .

[3] [TR-03112-2], [OASIS-EP]: By using input documents of type dsse:StructuredDataType, parts of XML documents can be encrypted or opaque encrypted data can
be inserted into XML documents.

Common PKI Profile: The encrypted message format MUST be XML-Enc according to the profile specified in Common PKI Part 8.
[4] Common PKI Profile: The ConnectionHandle and KeySelector elements MUST be omitted.

[5] Common PKI Profile: The EncryptionMethod and RecipientCertificate elements are Common PKI extensions to the EncryptRequest function input.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 28 of 83

[6] [TR-03112-2]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#warning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#communicationError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#trustedChannelEstablishmentFailed
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownProtocol
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownWebserviceBinding
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownDataSetName
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownDSIName
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificateNotFound
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificateFormatNotCorrectWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#invalidCertificateReference
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificateChainInterrupted
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/service#ocspResponderUnreachable
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/service#directoryServiceUnreachable
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificatePathNotValidatedWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificateStatusNotCheckedWarning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#digitalSignatureNotCorrect
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#signatureAlgorithmNotSui table
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#invalidCertificatePath
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#certificateRevoked
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#referenceTimeNotWithinCertificateValidityPeriod
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/encryption#encryptionOfCertainNodesOnlyForXMLDocuments
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/encryption#encryptionFormatNotSupported
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/encryption#invalidCertificate
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/key#keyGenerationNotPossible
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/key#encryptionAlgorithmNotSupported
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#securityConditionsNotSatisfied

[7] [TR-03112-2],[OASIS-EP]: If input documents were of type dsse:StructuredDataType, output documents with encrypted parts are returned as
dss:OPTIONALOutputs element of the response in form of dsse:EncryptedEstructuredData.

[7] [TR-03112-2],[OASIS-EP]: Output documents are encrypted dss:Document elements.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 29 of 83

Table 11: DecryptRequest

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="DecryptRequest"
type="dsse:DecryptRequestType"/>

Function call with input parameters. +- ++ [OASIS-EP] T2, T3 [1]

2 <complexType name="DecryptionRequestInputType">
 <complexContent>
 <extension base="ec:EncryptionRequestInputType">
 <sequence>

Optional input parameters to
DecryptRequest. ConnectionHandle
and KeySelector elements are inherited
from EncryptionRequestInputType .

++ ++ [OASIS-EP]

[TR-03112-2]
3.3.2

T10#2 [2]

3 <element ref="dsse:EncryptedStructuredData"
maxOccurs="unbounded" minOccurs="0"/>

 +- ++ [3]

4 </sequence>
 </extension>
 </complexContent>
 </complexType>

 ++

5 <element name="DecryptResponse"
type="dsse:DecryptResponseType"/>

Function output including mandatory result data
structure.

++ + [OASIS-EP]

[TR-03112-2]
3.3.2

T5 [4]

6 <complexType name="DecryptResponseType">
 <complexContent>
 <extension base="dss:ResponseBaseType">
 <sequence>

 ++ +

7 <element name="OutputDocuments">
 <complexType>
 <sequence maxOccurs="unbounded">
 <element ref="dss:Document"/>
 </sequence>
 </complexType>
 </element>

Decrypted output documents, if output was
successful.

++ + [OASIS-DSS]

8 </sequence>
 </extension>
 </complexContent>
</complexType>

[1] [TR-03112-2] semantics is: Decrypt encrypted documents.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 30 of 83

[2] [TR-03112-2], [OASIS-EP]: Encrypted input documents of type dss:Document are passed to the API function as InputDocuments element of the request.

Common PKI Profile: Large amounts of encrypted data (e. g. digital images) to be decrypted MAY be passed to the API function in form of a file by using the
dss:AttachmentReference variant of dss:Document .

[3] [TR-03112-2], [OASIS-EP]: Partially encrypted input documents of type dsse:EnhcryptedStructuredData are passed to the API function as optional input of the
request.

[4] [TR-03112-2]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#warning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#communicationError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#trustedChannelEstablishmentFailed
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownProtocol
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownWebserviceBinding
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownDIDName
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/encryption#encryptionFormatNotSupported
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#decryptionNotPossible
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#securityConditionsNotSatisfied
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#fileNotFound
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/terminal#noCard

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 31 of 83

Table 12: ShowViewer

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="ShowViewer">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-2]
3.2.3

T2 [1]

2 <element name="ChannelHandle"
type="iso:ChannelHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL parameter for addressing remote
systems. Default is addressing local system.

--
(TR
+-)

+-
(TR
++)

[TR-03112-4]
3.1.3

3 <element name="TrustedViewerId"
type="ec:TrustedViewerIdType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL identifier for selecting a certain
trusted viewer. Default is selecting the
configured default viewer.

+- ++ #11 [2]

4 <element name="Document"
type="dss:DocumentType" maxOccurs="unbounded"
minOccurs="0"/>

OPTIONAL document(s) to be displayed.
Subject to on the effective security policy, a
trusted viewer MAY decide to display only a
subset or overview of multiple similar
documents.

+- ++ [OASIS-DSS]

5 <element name="StyleSheetContent"
type="base64Binary" maxOccurs="1" minOccurs="0"/>

OPTIONAL XSL style sheet that the framework
MAY use to display XML content.

+- +- [XSLv1.1]

6 <element name="ViewerMessage"
maxOccurs="1" minOccurs="0">
 <complexType>
 <sequence>

OPTIONAL message to be displayed by the
trusted Viewer. Default is to use standard
messages of the trusted viewer.

+- +

7 <element name="FrameMessage"
 type="string" maxOccurs="1"
minOccurs="0"/>

OPTIONAL message to be displayed in the
Windows title or heading.

+- +

8 <element name="BodyMessage"
 type="string" maxOccurs="1"
minOccurs="0"/>
 </sequence>
 </complexType>
 </element>

OPTIONAL message to be displayed in the
windows body-

+- +

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 32 of 83

9 <element name="Timeout"
 type="nonNegativeInteger" maxOccurs="1"
minOccurs="0"/>

OPTIONAL number of seconds, after which the
trusted viewer windows(s) will be automatically
closed without user interaction. Default
SHOULD be to close the viewer window(s)
after 30 seconds.

+- +

10 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </element>

11 <simpleType name="TrustedViewerIdType">
 <restriction base="string">
 <maxLength value="64"/>
 </restriction>
</simpleType>

12 <element name="ShowViewerResponse"
type="iso:ResponseType">

Function output including mandatory result data
structure.

++ + [TR-03112-2]
3.2.3

T4, T5 [3]

[1] [TR-03112-2] semantics is: Show signed objects and/or verification results in a trusted viewer component.
[2] [TR-03112-2]: Reference to an unknown/unsupported viewer will result in the error message signature#unknownViewer .

[3] [TR-03112-2]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#warning
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#communicationError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#trustedChannelEstablishmentFailed
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownProtocol
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownWebserviceBinding
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/viewer#timeout
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/viewer#cancelationByUser
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/signature#unknownViewer
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/viewer#unsuitableSylesheetForDocument
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/il/viewer#viewerMessageTooLong

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 33 of 83

Table 13: GetTrustedViewerList

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="GetTrustedViewerList">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-3]
3.4.1

T2 [1]

2 <element name="ChannelHandle"
type="iso:ChannelHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL parameter for addressing remote
systems. Default is addressing local system.

--
(TR
+-)

+-
(TR
++)

[TR-03112-4]
3.1.3

3 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

4 <element name="GetTrustedViewerListResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">

Function output including mandatory result data
structure.

++ + [TR-03112-3]
3.4.1

T4, T5 [2]

5 <sequence>
 <element name="TrustedViewerId"
type="ec:TrustedViewerIdType" maxOccurs="unbounded"
minOccurs="0"/>
 </sequence>

List of the available trusted viewer components. ++ + T12#11

6 </extension>
 </complexContent>
 </complexType>
</element>

[1] [TR-03112-3] semantics is: Retrieve a list of all available trusted viewer components.
[2] [TR-03112-2]: Reference to an unknown/unsupported viewer will result in the error message signature#unknownViewer .

[2] [TR-03112-3]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 34 of 83

Table 14: GetTrustedViewerConfiguration

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="GetTrustedViewerConfiguration">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-3]
3.4.2

T2 [1]

2 <element name="ChannelHandle"
type="iso:ChannelHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL parameter for addressing remote
systems. Default is addressing local system.

--
(TR
+-)

+-
(TR
++)

[TR-03112-4]
3.1.3

3 <element name="TrustedViewerId"
type="ec:TrustedViewerIdType"/>

ID of the trusted viewer for which configuration
information is to be retrieved.

++ ++ T12#11 [2]

4 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

5 <element name="GetTrustedViewerConfigurationResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">
 <sequence>

Function output including mandatory result data
structure.

++ + [TR-03112-3]
3.4.2

T4, T5 [3]

6 <element name="ViewerConfiguration"
type="ec:ViewerConfigurationType"/>

Trusted viewer configuration information as it
could be retrieved.

++ + #8

7 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

8 <complexType name="ViewerConfigurationType">
 <sequence>

9 <element name="SupportedDocumentTypes"
maxOccurs="unbounded" minOccurs="0">
 <complexType>
 <sequence>

Information which document types the viewer
supports.

+- ++ [4]

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 35 of 83

10 <element name=”MimeType” type=”string”/> MIME content type associated with a document
type supported by the viewer.

++ ++ [RFC2045]

11 <element name=”Application” type=”string”
maxOccurs=”1” minOccurs=”0”/>

OPTI’ONAL name of an application associated
with the MIME type above.

+- +

12 <element name=”StyleSheet”
type=”dss:InlineXMLType” maxOccurs=”unbounded”
minOccurs=”0”/>

OPTIONAL set of style sheets that the viewer
employs to display particular content.

+- +

13 </sequence>
 </complexType>
 </element>

14 <element name=”IFDName” type=”string”
maxOccurs=”1” minOccurs=”0”/>

OPTIONAL reference to a card terminal that is
logically associated with the trusted viewer.

+- +

15 </sequence>
</complexType>

[1] [TR-03112-3] semantics is: Retrieve the configuration information about a particular trusted viewer.
[2] [TR-03112-2]: Reference to an unknown/unsupported viewer will result in the error message signature#unknownViewer.
[3] [TR-03112-3]: Possible major and minor result codes are:

http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/TrustedViewer#invalidID
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle

[4]

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 36 of 83

Table 15: GetCardInfoList

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="GetCardInfoList">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-3]
3.2.1

T2 [1]

2 <element name="ChannelHandle"
type="iso:ChannelHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL parameter for addressing remote
systems. Default is addressing local system.

--
(TR
+-)

+-
(TR
++)

[TR-03112-4]
3.1.3

3 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

4 <element name="GetCardInfoListResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">

Function output including mandatory result data
structure.

++ + [TR-03112-3]
3.2.1

T4, T5 [2]

 <sequence maxOccurs="1" minOccurs="1">
 <element name="CardInfo"
type="iso:CardInfoType" maxOccurs="unbounded"
minOccurs="0"/>
 </sequence>

List of registered CardInfo structures. ++ + [TR-03112-4]
Annex A

Section 2.2

5 </extension>
 </complexContent>
 </complexType>
</element>

[1] [TR-03112-3] semantics is: List all card types known by means of CardInfo files.

[2] [TR-03112-3]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 37 of 83

Table 16: SetCardInfoList

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="SetCardInfoList">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-3]
3.2.2

T2 [1]

2 <element name="ChannelHandle"
type="iso:ChannelHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONA L parameter for addressing remote
systems. Default is addressing local system.

--
(TR
+-)

+-
(TR
++)

[TR-03112-4]
3.1.3

3 <element name="CardInfo"
type="iso:CardInfoType" maxOccurs="unbounded"
minOccurs="0"/>

List of CardInfo structures to register.. +- ++ [TR-03112-4]
Annex A

Section 2.2 [2]

4 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

5 <element name="SetCardInfoListResponse"
type="iso:ResponseType"/>

Function output including mandatory result data
structure.

 [TR-03112-3]
3.2.2

T4, T5 [3]

[1] [TR-03112-3] semantics is: Store a list of CardInfo structures. The order of these structures is relevant for the recognition of card types.

[2] [TR-03112-3]: The list MAY be empty.

That feature can be employed by an application to clear the current CardInfo list before registering new CIFs using the AddCardInfoFiles function.

[3] [TR-03112-3]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/CardInfo#incorrectFile
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 38 of 83

Table 17: AddCardInfoFiles

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="AddCardInfoFiles">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. [TR-03112-3]
3.2.3

T2 [1]

2 <element name="ChannelHandle"
type="iso:ChannelHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL parameter for addressing remote
systems. Default is addressing local system.

--
(TR
+-)

+-
(TR
++)

[TR-03112-4]
3.1.3

3 <element name="CardInfo"
type="iso:CardInfoType" maxOccurs="unbounded"
minOccurs="1"/>

CardInfo structures to add to the current list,
if not yet present in that list.

++ ++ [TR-03112-4]
Annex A

Section 2.2

4 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

5 <element name="AddCardInfoFilesResponse"
type="iso:ResponseType"/>

Function output including mandatory result data
structure.

 [TR-03112-3]
3.2.3

T4, T5 [2]

[1] [TR-03112-3] semantics is: Append CardInfo structures from files for additional card types to the CardInfo list. During the import consistency of the card information
and signatures, if available, on the CardInfo files MUST be verified.

Common PKI Profile: All CardInfo files (CIF) must be signed.

[2] [TR-03112-3]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/CardInfo#addNotPossible
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/CardInfo#alreadyExisting
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/CardInfo#incorrectFile
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 39 of 83

Table 18: DeleteCardInfoFiles

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="DeleteCardInfoFiles">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. [TR-03112-3]
3.2.4

T2 [1]

2 <element name="ChannelHandle"
type="iso:ChannelHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL parameter for addressing remote
systems. Default is addressing local system.

--
(TR
+-)

+-
(TR
++)

[TR-03112-4]
3.1.3

3 <element name="CardTypeIdentifier"
type="anyURI" maxOccurs="unbounded" minOccurs="0"/>

Unique identifiers of CardInfo structures to
remove from the currently registered list.

+- ++ [TR-03112-4]
Annex A.3

Section 2.2 [2]

4 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

5 <element name="DeleteCardInfoFilesResponse"
type="iso:ResponseType"/>

Function output including mandatory result data
structure.

 [TR-03112-3]
3.2.4

T4, T5 [3]

[1] [TR-03112-3] semantics is: Delete zero or more CardInfo files.

[2] [TR-03112-3] Annex A.3: The unique identifying URI of a CardInfo structure is the sub-element ObjectIdentifier of the CardType data element.

[3] [TR-03112-3]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0 /resultminor/al/CardInfo#notExisting
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/CardInfo#deleteNotPossible
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChannelHandle

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 40 of 83

Table 19: GetProductInfo

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="GetProductInfo"
type="iso:RequestType"/>

Function call without input parameters. +- ++ T2 [1]

2 <element name="GetProcuctInfoResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">
 <sequence>

Function output including mandatory result data
structure.

++ + T4, T5 [2]

3 <element name="ProducerName" type="string"/> Manufacturer of the API framework
implementation

++ +

4 <element name="ProductName" type="string"/> Product name of the API framework
implementation

++ +

5 <element name="Version" type="string"/> Version number of the API framework
implementation

++ +

6 <element name="BuildNo" type="string"
minOccurs="0"/>

OPTIONAL build number of the API
framework implementation

+- +

7 <element name="ProducerAdditions"
type="anyType" minOccurs="0"/>

OPTIONAL additional data provided by the
manufacturer of the API framework
implementation

+- +

8 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

[1] Common PKI Profile: This is an additional function. Semantics is: Provide information about the API framework implementation.
[2] Common PKI Profile: Possible major and minor result codes are:

http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
or
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common# UnknownAPIFunction
if the API framework implementation does not support this function.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 41 of 83

3.3 Card and Reader Service Level Functions

Table 20: ListIFDs

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="ListIFDs">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-6]
3.1.3

T2 [1]

2 <element name="ContextHandle"
type="iso:ContextHandleType"/>

Reference to a terminal layer session. ++ ++ [ISO24727-4]

[TR-03112-6]
3.1.1

#4 [2]

3 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

4 <simpleType name="ContextHandleType">
 <restriction base="hexBinary"> </restriction>
</simpleType>

5 <element name="ListIFDsResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">

Function output including mandatory result data
structure.

++ + [TR-03112-6]
3.1.3

T4, T5 [3]

6 <sequence>
 <element name="IFDName"
maxOccurs="unbounded" minOccurs="0" type="string"/>
 </sequence>

Unique names of available card terminals ++ +

7 </extension>
 </complexContent>
 </complexType>
</element>

[1] [TR-03112-6] semantics is: List all card terminals available to the API framework.
[2] According to [TR-03112-6] the ContextHandle is obtained by a call to the EstablishContext function.

Common PKI Profile: An empty ContectHandle is used to reference the default context established by the InitializeFramwork function. In functions where
this element is optional it SHOULD be omitted.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 42 of 83

[2] [TR-03112-6]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/common#unknownContextHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/common#timeout

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 43 of 83

Table 21: GetStatus

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="GetStatus">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-6]
3.1.5

T2 [1]

2 <element name=”ContextHandle”
type=”iso:ContextHandleType” maxOccurs=”1”
minOccurs=”1”/>

Reference to a terminal layer session. ++ ++ [ISO24727-4]

[TR-03112-6]
3.1.1

T20#4

T20.[2]

3 <element name=”IFDName” type=”string”
maxOccurs=”1” minOccurs=”0”/>

Name of +- ++ [2]

4 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

5 <element name="GetStatusResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">

Function output including mandatory result data
structure.

++ + [TR-03112-6]
3.1.5

T4, T5 [3]

6 <sequence maxOccurs=”1” minOccurs=”1”>
 <element name=”IFDStatus”
maxOccurs=”unbounded” minOccurs=”0”
type=”iso:IFDStatusType”/>
 </sequence>

Card terminal status. ++ + #8

7 </extension>
 </complexContent>
 </complexType>
</element>

8 complexType name="IFDStatusType">
 <sequence>

Status of a single card terminal. [TR-03112-6]
3.1.5

9 <element name="IFDName" type="string"
maxOccurs="1" minOccurs="0"/>

Unique name of the card terminal. ++ +

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 44 of 83

10 <element name="Connected" type="boolean"
maxOccurs="1" minOccurs="0"/>

OPTIONAL indication whether a connection to
the card terminal is available. MAY be omitted
if the card terminal is permanently attached to
the local system.

+- +

11 <element minOccurs="1" maxOccurs="unbounded"
name="SlotStatus" type="iso:SlotStatusType"/>

Status of the slot(s) available in the card
terminal.

++ + #17

12 <element name="ActiveAntenna" type="boolean"
maxOccurs="1" minOccurs="0"/>

Indication whether a coupling antenna for
contactless cards is activated. MUST be omitted
if the card terminal is for contact cards only.

+- +

13 <element minOccurs="0" maxOccurs="unbounded"
name="DisplayStatus" type="iso:SimpleFUStatusType"/>

Status information about the available
display(s). MUST be omitted if there is no
display available in the card terminal.

+- + #22

14 <element minOccurs="0" maxOccurs="unbounded"
name="KeyPadStatus" type="iso:SimpleFUStatusType"/>

Status information about the available key
pad(s). MUST be omitted if there is no key pad
available in the card terminal.

+- + #22

15 <element minOccurs="0" maxOccurs="unbounded"
name="BioSensorStatus" type="iso:SimpleFUStatusType"/>

Status information about the available biometric
sensor(s). MUST be omitted if there is no
biometric sensor available in the card terminal.

+- + #22

16 </sequence>
</complexType>

17 <complexType name="SlotStatusType">
 <sequence>

Status of a slot within the card terminal. [TR-03112-6]
3.1.5

18 <element name="Index" type="nonNegativeInteger"
maxOccurs="1" minOccurs="1"/>

Slot index within the card terminal. ++ +

19 <element minOccurs="1" maxOccurs="1"
name="CardAvailable" type="boolean"/>

TRUE if there is a card available in the slot. ++ +

20 <element name="ATRorATS" type="hexBinary"
maxOccurs="1" minOccurs="0"/>

MUST hold the card’s ATR (Answer To Reset
for contact cards) or ATS (Answer To Select for
contactless cards) if CardAvailable is
True. Otherwise the element MUST be
omitted.

+- +

21 </sequence>
</complexType>

22 <complexType name="SimpleFUStatusType">
 <sequence>

Status of available devices (displays, key pad or
biometric sensors) within a card terminal.

 [TR-03112-6]
3.1.5

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 45 of 83

23 <element name="Index" type="nonNegativeInteger"/> Index of the device. ++ +

24 <element name="Available" type="boolean"/> TRUE if the device is available to the
application.

++ +

25 </sequence>
</complexType>

[1] [TR-03112-6] semantics is: Retrieve the status of one or all card terminals available to the API framework.
[2] The IFDName can be obtained by a call to the ListIFDs function.

[3] [TR-03112-6]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/common#unknownContextHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/terminal#unknownIFDName

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 46 of 83

Table 22: GetCardInfo

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="GetCardInfo">
 <complexType>
 <choice>

Function call with input parameters. +- ++ [TR-03112-5]
3.4

T2 [1]

2 <element name="ConnectionHandle"
type="iso:ConnectionHandleType"/>

Reference to a connected card application. If
given, the CardInfo structure for the
respective card type will be returned.

+- ++ [ISO24727-3]

[TR-03112-4]
3.2,1

T26#5,

T8.[10]

3 <sequence>
 <element name="Action" type="anyURI"
maxOccurs="1" minOccurs="0"/>

OPTIONAL indication how the CIFs to retrieve
from the repository are to be selected.

+- ++ [2]

4 <element name="CardTypeIdentifier"
type="anyURI" maxOccurs="unbounded" minOccurs="0"/>
 </sequence>

If given, unique identifiers of CardInfo
structures to retrieve (or exclude from retrieval)
from the repository server.

+- ++ [TR-03112-4]
Annex A.3

Section 2.2 [3]

5 </choice>
 </complexType>
</element>

6 <element name="GetCardInfoResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">
 <sequence minOccurs="1" maxOccurs="1">

Function output including mandatory result data
structure.

++ + [TR-03112-5]
3.4

T4, T5 [4]

7 <element name="CardInfo"
type="iso:CardInfoType" maxOccurs="unbounded"
minOccurs="0"/>

The requested CardInfo structure(s) if they
could be retrieved.

++ + [TR-03112-4]
Annex A

Section 2.2

8 </sequence> </extension>
 </complexContent>
 </complexType>
</element>

[1] [TR-03112-5] semantics is: Retrieve Information about a card currently available to the API framework or retrieve CardInfo files (CIF) from a designated repository
server.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 47 of 83

[2] [TR-03112-3]: The possible actions are:
http://www.bsi.bund.de/ecard/api/1.0/cardinfo/action#getSepcifiedFile
(default) to get the CIF specified by the subsequent card type identifier(s),
http://www.bsi.bund.de/ecard/api/1.0/cardinfo/action#getRelatedFiles
to get all CIFs related to the subsequent card type identifier(s) and
http://www.bsi.bund.de/ecard/api/1.0/cardinfo/action#getOtherFiles
to get alls the CIFs available at the repository, except for those specified by the subsequent card type identifier(s).

[3] [TR-03112-3] Annex A.3: The unique identifying URI of a CardInfo structure is the sub-element ObjectIdentifier of the CardType data element.

[4] [TR-03112-5]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownConnectionHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownCardType
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal/support#cardInfoRepositoryUnreachable

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 48 of 83

Table 23: Connect

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="Connect">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-6]
3.2.1

T2 [1]

2 <element name="ContextHandle"
type="iso:ContextHandleType" maxOccurs="1"
minOccurs="1"/>

Reference to a terminal layer session. ++ ++ [ISO24727-4]

[TR-03112-6]
3.1.1

T20#4,

T20,[2]

3 <element name="IFDName" type="string"/> Name of the card terminal. ++ ++ [2]

4 <element name="Slot"
type="nonNegativeInteger"/>

Index of a slot within the card terminal. ++ ++ [3]

5 <element name="Exclusive" type="boolean"
maxOccurs="1" minOccurs="0"/>

Set to TRUE if the card is to be blocked
exclusively for the application.

++ ++

6 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

7 element name="ConnectResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">
 <sequence>

Function output including mandatory result data
structure.

++ + [TR-03112-6]
3.2.1

T4, T5 [4]

8 <element name="CardHandle"
type="iso:CardHandleType" maxOccurs="1"
minOccurs="0"/>

Reference to the connected card if the
connection attempt was successful.

++ + #10

9 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

10 <simpleType name="CardHandleType">
<restriction base="hexBinary"> </restriction>
</simpleType>

Reference to a connected card.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 49 of 83

[1] [TR-03112-6] semantics is: Establish a connection to a card.
[2] The IFDName can be obtained by a call to the ListIFDs function.

[3] The SlotIndex can be obtained by a call to the GetStatus function.

[4] [TR-03112-6]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/common#unknownContextHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/terminal#exclusiveNotAvailable
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/terminal#unknownIFDName
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/terminal#slotIndexNotExisting
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/terminal#noCard

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 50 of 83

Table 24: Disconnect

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMO N
PKI

NO
TES

1 <element name="Disconnect">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. + ++ [TR-03112-6]
3.2.2

T2 [1]

2 <element name="CardHandle"
type="iso:CardHandleType"/>

Reference to the connected card. ++ ++ T23#10

3 <element name="Action" type="iso:ActionType"
maxOccurs="1" minOccurs="0"/>

OPTIONAL indication of the action to be
performed with the card.

+- ++ #5

4 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

5 <simpleType name="ActionType">
 <restriction base="string">
 <enumeration value="Reset"/>
 <enumeration value="Unpower"/>
 <enumeration value="Eject"/>
 <enumeration value="Confiscate"/>
 </restriction>
</simpleType>

Indication of the action to be performed with the
card upon deactivation.

+- ++ [TR-03112-6]
3.2.2

 [2]

6 <element name="DisconnectResponse"
type="iso:ResponseType"/>

Function output including mandatory result data
structure.

 [TR-03112-6]
3.2.2

T4, T5 [3]

[1] [TR-03112-6] semantics is: Terminate the connection to a card.
[2] Common PKI Profile: Reset and Unpower MUST be supported by the framework. Eject and Confiscate SHOULD be supported, if the IFD provides the

respective mechanical capability. An application SHOULD NOT rely on Eject or Confiscate actions.

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 51 of 83

[3] [TR-03112-6]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/common#invalidCardHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/common#timeout
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/terminal#mechanicalFunctionNotSupported

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 52 of 83

Table 25: VerifyUser

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="VerifyUser">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-6]
3.3.1

T2 [1]

2 <element name="CardHandle"
type="iso:CardHandleType"/>

Reference to a connected card. ++ ++ [2]

3 <element name="InputUnit"
type="iso:InputUnitType"/>

Device and method to be used for user
authentication.

++ ++ #10

4 <element name="DisplayIndex"
type="nonNegativeInteger" maxOccurs="1" minOccurs="0
/">

OPTIONAL index of the display device in the
card terminal to be used for user interface
messages.

+- ++

5 <element name="AltVUMessages"
type="iso:AltVUMessagesType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL alternative user interface messages
provided by the application. Default is to use
standard messages.

+- +

6 <element name="TimeoutUntilFirstKey"
type="positiveInteger" maxOccurs="1" minOccurs="0"/>

OPTIONAL timeout if the user does not type a
key, in milliseconds.

+- + [3]

7 <element name="TimeoutAfterFirstKey"
type="positiveInteger" maxOccurs="1" minOccurs="0"/>

OPTIONAL timeout if the user types an
insufficient number of keys, in milliseconds.

+- + [3]

8 <element name="Template" type="hexBinary"/> APDU template for the verify command
according to [ISO7816-4]

++ ++

9 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

10 <complexType name="InputUnitType">
 <choice>

 [TR-03112-6]
3.3.1

11 <element name="PinInput" type="iso:PinInputType"/> Use a PIN input device. ++ ++ #15

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 53 of 83

12 <element name="BiometricInput"
type="iso:BiometricInputType"/>

Use a biometric input device. --
(TR
+-)

+-
(TR
++)

 #31

13 </choice>
</complexType>

14 <complexType name="PinInputType">
 <sequence>

Details of a PIN input device. ++ ++ [TR-03112-6]
3.3.1

15 <element name="Index" type="nonNegativeInteger"/> Index of the input device within the card
terminal.

++ ++

16 <element name="PasswordAttributes"
type="iso:PasswordAttributesType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL PIN/password attributes according
to [ISO7816-15] and [ISO7816-15AM2].

+- ++

17 </sequence>
</complexType>

18 <simpleType name="PadCharType">
 <restriction base="hexBinary">
 <length value="1" fixed="true"/>
 </restriction>
</simpleType>

Padding Character.

19 <complexType name="PasswordAttributesType">
 <sequence>

PIN/password policy. [ISO7816-15]

[ISO7816-
15AM2]

 [TR-03112-
6] 3.3.1

20 <element name="pwdFlags"
type="iso:PasswordFlagsType"/>

Information about the nature of the PIN. ++ ++ #28

21 <element name="pwdType"
type="iso:PasswordTypeType"/>

Character set used for the PIN. ++ ++ #29

22 <element name="minLength"
type="nonNegativeInteger"/>

Minimal number of characters. ++ ++

23 <element name="storedLength"
type="nonNegativeInteger"/>

Number of PIN characters stored in the card. ++ ++

24 <element name="maxLength"
type="nonNegativeInteger" maxOccurs="1"
minOccurs="0"/>

Maximal number of characters. +- ++

25 <element name="padChar" type="iso:PadCharType"
maxOccurs="1" minOccurs="0"/>

OPTIONAL padding character used if more
then minLength characters are stored in the
card.

+- ++ #18

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 54 of 83

26 element name="lastPasswordChange" type="dateTime"
maxOccurs="1" minOccurs="0"/>

OPTIONAL time of last PIN change. +- ++

27 </sequence>
</complexType>

28 <simpleType name="PasswordFlagsType">
 <union memberTypes="iso:BitString">
 <simpleType>
 <list>
 <simpleType>
 <restriction base="token">
 <enumeration value="case-sensitive"/>
 <enumeration value="local"/>
 <enumeration value="change-disabled"/>
 <enumeration value="unblock-disabled"/>
 <enumeration value="initialized"/>
 <enumeration value="needs-padding"/>
 <enumeration value="unblockingPassword"/>
 <enumeration value="soPassword"/>
 <enumeration value="disable-allowed"/>
 <enumeration value="integrity-protected"/>
 <enumeration value="confidentiality-
protected"/>
 <enumeration value="exchangeRefData"/>
 <enumeration value="resetRetryCounter1"/>
 <enumeration value="resetRetryCounter2"/>
 </restriction>
 </simpleType>
 </list>
 </simpleType>
 </union>
</simpleType>

Password attribute flags. +- ++ [ISO7816-15]

[ISO7816-
15AM2]

[TR-03112-6]
3.3.1

29 <simpleType name="PasswordTypeType">
 <restriction base="string">
 <enumeration value="bcd"/>
 <enumeration value="ascii-numeric"/>
 <enumeration value="utf8"/>
 <enumeration value="half-nibble-bcd"/>
 <enumeration value="iso9564-1"/>
 </restriction>
</simpleType>

Character set used for the PIN. +- ++ [ISO7816-15]

[TR-03112-6]
3.3.1

 [4]

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 55 of 83

30 <simpleType name="BitString">
 <restriction base="string">
 <pattern value="[0-1]{0,}"/>
 </restriction>
</simpleType>

31 <complexType name="BiometricInputType">
 <sequence>

Details of a biometric input device. --
(TR
+-)

+-
(TR
++)

[TR-03112-6]
3.3.1

32 <element name="Index" type="nonNegativeInteger"/> Index of the input device within the card
terminal.

--
(TR
+-)

+-
(TR
++)

33 <element name="BiometricSubtype"
type="nonNegativeInteger"/>

Subtype of biometric method according to the
BioAPI specification.

--
(TR
+-)

+-
(TR
++)

[ISO19784-1]

34 </sequence>
</complexType>

35 <complexType name="AltVUMessagesType">
 <sequence>

Alternative user interface messages provided by
the application.

36 <element name="AuthenticationRequestMessage"
type="string" maxOccurs="1" minOccurs="0"/>

Initial prompt for authentication. +- +

37 <element name="SuccessMessage" type="string"
maxOccurs="1" minOccurs="0"/>

Successful authentication response to the user. +- +

38 <element name="AuthenticationFailedMessage"
type="string" maxOccurs="1" minOccurs="0"/>

Failed authentication response to the user.
SHOULD indicate that the card may be blocked
due to the failed attempt.

+- +

39 <element name="RequestConfirmationMessage"
type="string" maxOccurs="1" minOccurs="0"/>

Prompt to repeat the last input. +- +

40 <element name="CancelMessage" type="string"
maxOccurs="1" minOccurs="0"/>

Cancelled authentication response to the user. +- +

41 </sequence>
</complexType>

42 <element name="VerifyUserResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">
 <sequence>

Function output including mandatory result data
structure.

 [TR-03112-6]
3.3.1

T4, T5 [5]

43 <element name="Response" type="hexBinary"
maxOccurs="1" minOccurs="1"/>

Return code of the card (e. g. 90 00 for
successful authentication)

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 56 of 83

44 </sequence>
</extension>
</complexContent>
</complexType>
</element>

[1] [TR-03112-6] semantics is: Initiate a user authentication to the card via PIN or biometric means.
[2] The CardHandle can be obtained by a call to the Connect function.

[3] Common PKI Profile: If the card terminal comprises a display, an appropriate cancel message SHOULD be displayed by the card terminal if a timeout during PIN entry
occurred.

[4] Common PKI Profile: The additional value iso9564-1 means that the PIN is to be encoded in the 2 PIN Block format according to [ISO9564-1].

[5] [TR-03112-6]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl#cancelationByUser
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/common#timeout
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/common#invalidCardHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/terminal#noCard
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/terminal#IFDBusy
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/IO#unknownInputDevice
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/IO#unknownBiometricSubtype

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 57 of 83

Table 26: DSIRead

SUPPORT REFERENCES # XML SCHEMA DEFINITION SEMANTICS
GEN PROC BASE

STANDARDS .
COMMON
PKI

NO
TES

1 <element name="DSIRead">
 <complexType>
 <complexContent>
 <extension base="iso:RequestType">
 <sequence>

Function call with input parameters. +- ++ [TR-03112-4]
3.4.9

T2 [1]

2 <element name="ConnectionHandle"
type="iso:ConnectionHandleType"/>

Reference to a connected card application. ++ ++ [ISO24727-3]

[TR-03112-4]
3.2,1

#5,

T8.[10]

3 <element name="DSIName"
type="iso:DSINameType"/>

Name of the DSI that is to be read. ++ ++ #20 [2]

4 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

5 <complexType name="ConnectionHandleType">
 <complexContent>

Reference to a connected card application. ++ ++ [TR-03112-4]
3.2,1

6 <extension base="iso:CardApplicationPathType">
 <sequence>

Reference to a card application. #13

7 <element name="CardHandle"
type="iso:CardHandleType"/>

Reference to a connected card. ++ ++ T23#10 [3]

8 <element name="RecognitionInfo" maxOccurs="1"
minOccurs="0">
 <complexType>
 <sequence>

OPTIONAL additional info for selecting the
card that contains the DSI to be read.

--
(TR
+-)

+-
(TR
++)

9 <element name="CardType" type="anyURI"
maxOccurs="1" minOccurs="0"/>

OPTIONAL card type identifier. --
(TR
+-)

+-
(TR
++)

10 <element name="CaptureTime"
type="dateTime" maxOccurs="1" minOccurs="0"/>

OPTIONAL specification of the time when the
card was recognized.

--
(TR
+-)

+-
(TR
++)

11 <element name="ICCSN" type="string"
maxOccurs="1" minOccurs="0"/>

OPTIONAL card serial number. --
(TR
+-)

+-
(TR
++)

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 58 of 83

12 </sequence>
 </complexType>
 </element>
 </sequence>
 </extension>
 </complexContent>
</complexType>

13 <complexType name="CardApplicationPathType">
 <sequence>

Reference to a card application. [TR-03112-4]
3.1.3

14 <element name="ChannelHandle"
type="iso:ChannelHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL parameter for addressing remote
systems. Default is addressing local system.

--
(TR
+-)

+-
(TR
++)

15 <element name="ContextHandle"
type="iso:ContextHandleType" maxOccurs="1"
minOccurs="0"/>

OPTIONAL reference to a terminal layer
session.

-
(TR
+-)

++ [ISO24727-4]

[TR-03112-6]
3.1.1

T20#4,

T20.[2]

16 <element name="IFDName" maxOccurs="1"
minOccurs="0" type="string"/>

OPTIONAL name of the card terminal in which
the card that contains the DSI to be read is
inserted.

+- ++ [4]

17 < element name="SlotIndex"
type="nonNegativeInteger" maxOccurs="1" minOccurs="0"
>

OPTIONAL index of a slot within the card
terminal.

+- ++ [5]

18 <element name="CardApplicationIdentifier"
maxOccurs="1" minOccurs="0"
type="iso:ApplicationIdentifierType"/>

OPTIONAL identifier of a card application. --
(TR
+-)

+-
(TR
++)

[ISO24727-3]

19 </sequence>
</complexType>

20 simpleType name="DSINameType">
 <restriction base="string">
 <minLength value="1"/>
 <maxLength value="255"/>
 </restriction>
</simpleType>

 [ISO24727-3]

21 <element name="DSIReadResponse">
 <complexType>
 <complexContent>
 <extension base="iso:ResponseType">
 <sequence>

Function output including mandatory result data
structure.

++ + [TR-03112-4]
3.4.9

T4, T5 [6]

22 <element name="DSIContent" type="hexBinary"
maxOccurs="1" minOccurs="0"/>

Value of the DSI, if it could be read success-
fully.

++ +

Common PKI Part 7: Signature API Version 2.0

API Functions Common PKI Part 7 – Page 59 of 83

23 </sequence>
 </extension>
 </complexContent>
 </complexType>
</element>

[1] [TR-03112-4] semantics is: Read a Data Structure for Interoperability (DSI) in the selected data set of a card application.

Common PKI Profile: This function is required to read certificates from a card.
[2] Common PKI Profile: Only DSIs representing certificates SHOULD be read.

[3] The CardHandle can be obtained by a call to the Connect function.

[4] The IFDName can be obtained by a call to the ListIFDs function.

[5] The SlotIndex can be obtained by a call to the GetStatus function.

[6] [TR-03112-4]: Possible major and minor result codes are:
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#ok
http://www.bsi.bund.de/ecard/api/1.0/resultmajor#error
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#noPermission
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#internalError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/al/common#parameterError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#communicationError
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/dp#unknownChanelHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownConnectionHandle
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#notInitialized
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#unknownDSIName
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#prerequisitesNotSatisfied
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/sal#securityConditionsNotSatisfied
 http://www.bsi.bund.de/ecard/api/1.0/resultminor/ifdl/common#unknownContextHandle

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 60 of 83

Annexes

Annex A: C/C++ Binding

This annex provides the contents of a header file cpsigapi.h for the C/C++ binding of the Common PKI Signature API.

Listing 1: File CPSigAPI.h

#ifndef CPSIGAPI_H
#define CPSIGAPI_H

/*
 * Copyright (c) 2008, T7 e.V.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * - Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * - Neither the name of T7 e.V. nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 61 of 83

 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef __cplusplus
extern "C" {
#endif

#if defined(WIN32)
 #define CPSIGAPIEXPORT_FOR_WIN32
#endif

#ifndef CPSIGAPIEXPORT_INEXPORT
 #ifdef CPSIGAPIEXPORT_FOR_WIN32
 #define CPSIGAPIEXPORT_INEXPORT __declspec(dllimport)
 #else
 #define CPSIGAPIEXPORT_INEXPORT
 #endif
#endif

#define CPSIGAPIEXPORT_RET(ret) CPSIGAPIEXPORT_INEXPORT ret _stdcall

/**
 *
 * \brief Common PKI Signature API Context
 * Contect definition
 *
 */
typedef void* CPSigAPIContext;

/**
 *
 * \brief Aquire Common PKI Signature API Context
 *
 */

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 62 of 83

CPSIGAPIEXPORT_RET(CPSigAPIContext)
CPSigAPIAquireContext
 (
);

/**
 *
 * \brief Free Common PKI Signature API Context
 *
 */
CPSIGAPIEXPORT_RET(void)
CPSigFreeContext
 (
 CPSigAPIContext context
);

/**
 *
 * \brief Excecute Common PKI Signature API Context
 *
 * Execution of a Common PKI Signature API function names 'function'.
..* Function call parameter is the context handler 'context'.
..* This contect handler must previously be allocated via CPSigAPIAquireContext.
..* The function call to 'function'is then execured in that context.
..* Input and output parameter to 'function' are passed as XML structures as specified
..* in the Common PKI Signature API.
..* Input parameters are passed in buffer 'xmlInput' with size 'xmlInputSize'.
..* For the output parameters of the function, the caller allocates and passes
 * a buffer 'xmlOutput' of 'xmlOutputSize' bytes.
 * If that buffer is suffucient, it will be used. If the buffer is too small,
 * the function will return with an error and indicate the required output buffer
 * size in 'xmlOutputSize'.The XML function result may then be retrieved by a second
 * function call using no input ('xmlInput' a Null pointer and 'xmlInputSize' zero)
 * and a reallocates, sufficiently large output buffer.
 *
 * \param context Context in which the function 'function' is to be executed
 * \param function Name of the Common PKI Signature APi function to be executed

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 63 of 83

 * \param xmlInput Buffer containing the input parameters to 'function' in
 * form of an XML structure
 * \param xmlInputSize Size of the input buffer
 * \param xmlOutput Buffer fort he XMl result structure
 * \param xmlOutputSize Size of the result buffer; will be set to the size of the XML result
 * structure upon success and upon a CPSIGAPI_BUFFERTOSMALL error
 * \param error Detailed error code if the function result is -1
 *
 * \return 0 Function could be executed successfully. The result of the call
 * is placed in 'xmlOutput'. the size of the XML result structure is
 * placed in 'xmlOutputSize'.
 * -1 An error occured. The variable 'error' contains a detailed
 * error code. Possible error codes are CPSIGAPI_SUCCESS,
 * CPSIGAPI_BUFFERTOSMALL, CPSIGAPI_UNKNOWNFUNCTION and
 * CPSIGAPI_UNKNOWNERROR.
 */
#define CPSIGAPI_SUCCESS 0 /**< no error */
#define CPSIGAPI_UNKNOWNERROR 1 /**< internal error */
#define CPSIGAPI_BUFFERTOSMALL 2 /**< output buffer too small for result */
#define CPSIGAPI_UNKNOWNFUNCTION 3 /**< unknown function name */

CPSIGAPIEXPORT_RET(int)
CPSigAPIExecute
 (
 CPSigAPIContext context,
 unsigned char const* xmlInput,
 int xmlInputSize,
 unsigned char const* xmlOutput,
 int *xmlOutputSize,
 unsigned long* error
);

/**
 *
 * \brief GetErrorMessage
 *
 * If an error occured during CPSigAPIExecute, i. e. its return value is -1 and the error

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 64 of 83

 * code in the 'error' parameter is CPSIGAPI_UNKNOWNERROR, i. e. an internal error of the
 * C wrapper layer occurred, the C wrapper interal error messaage can be retrieved using this
 * function.
 *
 * \return Internal C wrapper error message (null-terminated string)
 */
CPSIGAPIEXPORT_RET(char *)
CPSigAPIGetErrorMessage
 (
);

#ifdef __cplusplus
}
#endif

#endif

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 65 of 83

Annex B: Java Binding

This annex provides the contents of definition files of the package org.common-pki.signatureapi for the Java binding of the Common PKI
Signature API.

Listing 2: File ECardApiService.java

/*
 * Copyright (c) 2008, T7 e.V.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * - Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * - Neither the name of T7 e.V. nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 66 of 83

 * POSSIBILITY OF SUCH DAMAGE.
 */
package org.common-pki.signatureapi;

import java.util.Iterator;

import sun.misc.Service;

/**
 * Access the VM singleton for {@link IECardApiService}.
 * <p>
 * To make this work, just do one of the following:
 *
 * set a {@link IECardApiService} of your choice in {@link ECardApiService}.
 * include a service provider file
 * "META-INF/services/org.common-pki.signatureapi.IECardApiService" contain just the
 * class name of your implementation in your deployment (jar-file).
 *
 *
 */
public class ECardApiService {

 private static IECardApiService ACTIVE;

 private static IECardApiService findNativeInterface() {
 ClassLoader loader = Thread.currentThread().getContextClassLoader();
 if (loader == null) {
 loader = ECardApiService.class.getClassLoader();
 }
 IECardApiService impl = null;
 Iterator ps = Service.providers(IECardApiService.class, loader);
 if (ps.hasNext()) {
 impl = (IECardApiService) ps.next();
 }
 return impl;
 }

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 67 of 83

 public static synchronized IECardApiService get() {
 if (ACTIVE == null) {
 set(findNativeInterface());
 }
 return ACTIVE;
 }

 public static synchronized void set(IECardApiService eCardApiServiceImpl) {
 ACTIVE = eCardApiServiceImpl;
 }

}

Listing 3: File IECardApiService.java

/*
 * Copyright (c) 2008, T7 e.V.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * - Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * - Neither the name of T7 e.V. nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 68 of 83

 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
package org.common-pki.signatureapi;

import java.io.IOException;

/**
 * The interface IECardApiService provides direct access to aCommon PKI Signature API
 * implementation. Calls to the eCard API implementation are stripped down to
 * the SOAP message's body content only.
 *
 */
public interface IECardApiService {

 public void service(IECardApiRequest request, IECardApiResponse response)
 throws IOException;

}

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 69 of 83

Listing 4: File IECardApiRequest.java

/*
 * Copyright (c) 2008, T7 e.V.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * - Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * - Neither the name of T7 e.V. nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
package org.common-pki.signatureapi;

import java.io.InputStream;

/**
 * A eCard API service request providing just the contents of the SOAP request's

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 70 of 83

 * <body> tag.
 *
 * For example:
 *
 * <pre>
 * <m:GetCertificate xmlns:m="http://www.bsi.bund.de/ecard/api/1.0">
 * <m:GetCertificateRequest>
 * ...
 * </m:GetCertificateRequest>
 * </m:GetCertificate>
 * </pre>
 *
 */
public interface IECardApiRequest {

 /**
 * @return a InputStream containing the contents of the SOAP request's
 * <body> tag
 */
 public InputStream getInputStream();

}

Listing 5: File IECardApiResponse.java

/*
 * Copyright (c) 2008, T7 e.V.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 71 of 83

 *
 * - Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * - Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * - Neither the name of T7 e.V. nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
package org.common-pki.signatureapi;

import java.io.OutputStream;

/**
 *
 * A eCard API service response providing just the contents of the SOAP
 * responses' <body> tag.
 *
 * For example:
 *
 * <pre>
 * <m:GetCertificateResponse xmlns:m="http://www.bsi.bund.de/ecard/api/1.0">

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 72 of 83

 * ...
 * </m:GetCertificateResponse>
 * </pre>
 *
 */
public interface IECardApiResponse {

 public OutputStream getOutputStream();

}

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 73 of 83

Annex C: Schema for Card Information Files

The following schema is a redefinition of the one available in files CardInfo.xsd, ISO24727-3.xsd, ISO24727-Protocols.xsd , ISOCommon.xsd and
ISOIFD.xsd from http://www.bsi.bund.de/literat/tr/tr03112/api/1.0/wsdl.zip. See also the remarks in section 2.2.

Listing 6: File CommonPKICardInfo.xsd

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:iso="urn:iso:std:iso-iec:24727:tech:schema"
targetNamespace="urn:iso:std:iso-iec:24727:tech:schema">

 <!-- ========================= -->
 <!-- BEGIN <redefine> -->
 <!-- ========================= -->

 <redefine schemaLocation="CardInfo.xsd">

 <!-- ========================= -->
 <!-- PIN Compare -->
 <!-- ========================= -->

 <complexType name="PinCompareQualifierType">
 <complexContent>
 <extension base="iso:PinCompareQualifierType">
 <sequence>
 <element name="RetryCounterProtocol" type="anyURI" minOccurs="0">
 <annotation>
 <documentation>
 Protocol for determining the current value of the PIN retry counter
 URIs will be assigned for strictly ISO 7816 compatible cards,
 CardOS, StarCOS and other card operating systems if required
 Protocol 'urn:t7:cards:pin:eci:none'
 describes the fact that a card does not provide information about the retry counter

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 74 of 83

 </documentation>
 </annotation>
 </element>
 <element name="OperationUsageCounter" type="iso:OperationUsageCounterType" minOccurs="0"
maxOccurs="unbounded">
 <annotation>
 <documentation>
 Information about the allowed number of certain operations
 before a new validation of the PIN is required
 </documentation>
 </annotation>
 </element>
 <element name="PinInitializationInfo" type="iso:PinInitializationInfoType" minOccurs="0"/>
 <element name="PinInitializationCheck" type="iso:PinInitializationCheckType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <!-- ========================= -->
 <!-- Signature Generation -->
 <!-- ========================= -->

 <complexType name="SignInfoType">
 <complexContent>
 <extension base="iso:SignInfoType">
 <sequence>
 <element name="SignatureGenerationSequence" type="iso:SignatureGenerationSequenceType"
minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 </redefine>

 <!-- ========================= -->

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 75 of 83

 <!-- END <redefine> -->
 <!-- ========================= -->

 <!-- ====================== -->
 <!-- Usage Counter -->
 <!-- ====================== -->

 <complexType name="OperationUsageCounterType">
 <simpleContent>
 <annotation>
 <documentation>
 Type of an operation and number of these operations that may
 be performed upon a single validation of the PIN,
 for the 'signature' operation this corresponds to the SSEC value
 </documentation>
 </annotation>
 <extension base="nonNegativeInteger">
 <attribute name="Operation">
 <simpleType>
 <restriction base="string">
 <enumeration value="signature"/>
 <enumeration value="decryption"/>
 <enumeration value="authentication"/>
 <enumeration value="encryption"/>
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>

 <!-- ====================== -->
 <!-- PIN Initialization -->
 <!-- ====================== -->

 <complexType name="simpleDataMaskType">

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 76 of 83

 <sequence>
 <annotation>
 <documentation>
 Used for checking the status bytes in a cards response APDU.
 If the status bytes in a bit-wise logical AND conjunction
 with the Mask element correspond to the Value element,
 the response is considered consistent
 </documentation>
 </annotation>
 <element name="Value" type="hexBinary"/>
 <element name="Mask" type="hexBinary" minOccurs="0"/>
 </sequence>
 </complexType>
 <complexType name="PinInitializationInfoType">
 <complexContent>
 <restriction base="iso:DIDAbstractQualifierType">
 <annotation>
 <documentation>
 Protocol 'urn:t7:cards:pin:init:fixed'
 describes initialization with a fixed transport PIN
 TransportPinDID is optional. If it is given, the conversion of the transport PIN
 must be done in two steps: first a VERIFY command for PIN verification,
 the a CHANGE REFERENCE DATA command for changing the signature PIN.
 The format for transmission of transport and signature PIN depends on the
 respective DIDInfo elements. If the TransportPinDID element is omitted,
 the conversion of the transport PIN must be performed by a
 CHANGE REFERENCE DATA command that contains both transport PIN
 and new signature PIN. The format for transmission of transport and signature PIN
 depends on the DIDInfor element of the signature PIN.
 BulkInitialization
 If multiple PINS are stored and are to be initialized using the same transport PIN,
 the respective DIDInfo elements can express this by referencing the same
 transport PIN object in the TransportPinDID element and a 'true' value in the optional
 BulkInitialization element. In that case all PINs referencing that transport PIN must be
 initialized after verification of the transport PIN.
 Default if the element is omitted shall be 'false'.
 TransportPINValue is optional. I fit is given, it contains the value of the transport PIN

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 77 of 83

 as hexadecimal string.If necessary that value must be embedded in a 2PIN Block
 or padded before transmitting it to the card. If an empty hex string is given, an empty
 value must be transmitted to the card. If the element is omitted, the PIN can be
 initialized immediately, without using a transport PIN. For that end, APDU parameter
 P1 must be set to 0x01.
 Protocol 'urn:t7:cards:pin:init:oncard'
 describes the case that the transport PIN is stored in a file on the card.
 TransportPinDID as in the 'urn:t7:cards:pin:init:fixed' protocol
 BulkInitialization as in the 'urn:t7:cards:pin:init:fixed' protocol.
 TransportPinDSI references the data object on the card that contains the transport PIN.
 That data object may be a binary EF or a record.
 Protocol 'urn:t7:cards:pin:init:user'
 describes the case that the transport PIN is transferred to the user by an out-of-band
 mechanism, e. g. a PIN letter.
 TransportPinDID as in the 'urn:t7:cards:pin:init:fixed' protocol.
 BulkInitialization as in the 'urn:t7:cards:pin:init:fixed' protocol.
 </documentation>
 </annotation>
 <sequence>
 <element name="TransportPinDID" type="string" minOccurs="0"/>
 <element name="BulkInitialization" type="boolean" minOccurs="0"/>
 <element name="TransportPinValue" type="hexBinary" minOccurs="0"/>
 <element name="TransportPinDSI" type="string" minOccurs="0"/>
 <element name="PostInitializationCommands" minOccurs="0">
 <annotation>
 <documentation>
 PostInitializationCommands can be used to store the state resulting from
 PIN initialization in a file. The optional data element consists of a sequence
 of command and response APDUs. The command aPDUs are sent to the card
 and the answers are checked for conformity with the respective resporse APDUs.
 If an error occurs, the execurtion of post initialization commands is interrupted.
 In any case the card is reset after post initialization commands have been executed.
 </documentation>
 </annotation>
 <complexType>
 <sequence minOccurs="0" maxOccurs="unbounded">
 <element name="CommandApdu" type="hexBinary"/>

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 78 of 83

 <element name="ResponseApdu" type="iso:simpleDataMaskType"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </restriction>
 </complexContent>
 </complexType>

 <!-- ============================ -->
 <!-- PIN Initialization Check -->
 <!-- ============================ -->

 <complexType name="PinInitializationCheckType">
 <complexContent>
 <restriction base="iso:DIDAbstractQualifierType">
 <annotation>
 <documentation>
 Protocol 'urn:t7:cards:pin:initcheck:verify'
 determines the PIN initialization state by sending a VERIFY command with empty data field to the
card.
 PinUsable defines the expected status byte response if the PIN is in a usable state.
 PinTransportState defines the expected status byte response if the PIN has not yet been
initialized.
 Both elements are mutually exclusive.
 Protocol 'urn:t7:cards:pin:initcheck:file'
 determines the PIN initialization state based on a file on the card.
 PinStatusDSI references the DSI that stores information about the PIN inititalization state.
 PinUsable defines the expected status byte response after evaluation of the DSI,
 if the PIN is in a usable state.
 PinTransportState defines the expected status byte response after evaluation of the DSI,
 if the PIN has not yet been initialized.
 The last two elements are mutually exclusive.
 </documentation>
 </annotation>
 <sequence>

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 79 of 83

 <element name="PinStatusDSI" type="string" minOccurs="0"/>
 <choice>
 <element name="PinUsable" type="iso:simpleDataMaskType"/>
 <element name="PinTransportState" type="iso:simpleDataMaskType"/>
 </choice>
 </sequence>
 </restriction>
 </complexContent>
 </complexType>

 <!-- ======================= -->
 <!-- SignatureGeneration -->
 <!-- ======================= -->

 <complexType name="CommandType">
 <annotation>
 <documentation>
 placeholder for command references
 </documentation>
 </annotation>
 <sequence>
 </sequence>
 </complexType>
 <complexType name="SignatureGenerationSequenceType">
 <annotation>
 <documentation>
 Required sequence of commands for generating a qualified signature
 </documentation>
 </annotation>
 <sequence>
 <choice minOccurs="0">
 <element name="MSE_RESTORE_ONCE" type="iso:CommandType"/>
 <element name="MSE_RESTORE_ALWAYS" type=" iso:CommandType"/>
 </choice>
 <element name="MSE_HASH" type="iso:CommandType" minOccurs="0"/>
 <element name="PSO_HASH" type="iso:CommandType" minOccurs="0"/>

Common PKI Part 7: Signature API Version 2.0

Annexes Common PKI Part 7 – Page 80 of 83

 <choice minOccurs="0">
 <element name="MSE_KEY" type="iso:CommandType"/>
 <element name="MSE_DS" type="iso:CommandType"/>
 <element name="MSE_KEY_DS" type="iso:CommandType"/>
 </choice>
 <element name="PSO_CDS" type="iso:CommandType" minOccurs="0"/>
 </sequence>
 <attribute name="id" type="integer"/>
 </complexType>
</schema>

Common PKI Part 7: Signature API Version 2.0

References Common PKI Part 7 – Page 81 of 83

References

[CAdES] ETSI TS 101 733 v1.7.4: Electronic Signatures and Infrastructures (ESI); CMS
Advanced Electronic Signatures (CAdES), July 2008

[ISO19784-1] ISO/IEC 19784-1: “Information technology – Biometric application
programming interface – Part 1: BioAPI specification”, (FDIS) Version
2005-03-06

[ISO24727-2] ISO/IEC 24727-2: “Identification Cards – Integrated Circuit Cards
Programming Interfaces – Part 2: Generic card interface”, (FDIS-Ballot)
Version 2007-10-25

[ISO24727-3] ISO/IEC 24727-3: “Identification Cards – Integrated Circuit Cards
Programming Interfaces – Part 3: Application Interface”, (FCD) Version
2007-09-14

[ISO24727-4] ISO/IEC 24727-4: “Identification Cards – Integrated Circuit Cards
Programming Interfaces – Part 4: API Administration”, (FCD) Version
2007-10-31

[ISO7816-4] ISO/IEC 7816-4: “Identification cards – Integrated circuit cards – Part
4:Organization, security and commands for interchange”, Version 2005-
01-15

[ISO7816-15] ISO/IEC 7816-15: “Identification cards – Integrated circuit(s) cards with
contacts – Part 15: Cryptographic information application”, (FDIS)
Version 2003-02-12

[ISO7816-15AM2] ISO/IEC 7816-15 Amendment 2: “Identification cards – Integrated
circuit(s) cards with contacts – Part 15: Cryptographic information
application – Amendment for modifications and error corrections on
ISO/IEC 7816- 15”, (FDIS-Ballot) Version 2007-09-18

[ISO9564-1] ISO 9564-1: Banking – Personal Identification Number (PIN)
management and security – Part 1: Basic principles and requirements for
online PIN handling in ATM and POS systems

[OASIS-AdES] OASIS: “Advanced Electronic Signature Profiles of the OASIS Digital
Signature Service”, Version 1.0, http://docs.oasis-
open.org/dss/v1.0/oasis-dss-profiles-AdES-spec-v1.0-os.pdf

[OASIS-DSS] OASIS: “Digital Signature Service Core Protocols, Elements, and
Bindings”, Version 1.0, http://docs.oasis-open.org/dss/v1.0/oasis-dss-
core-spec-v1.0-os.pdf

[OASIS-EP] OASIS / C. Orthacker (A-SIT): “Proposal for an Encryption Profile for
OASIS DSS”, A-SIT Contribution 01, 20 September 2007,
http://www.oasis-open.org/committees/download.php/25384/oasis-
dss_profile-encryption_A-SIT_v0.1.doc

[OASIS-SAML] OASIS: “Security Assertion Markup Language (SAML)”, Version 1.0,
http://www.oasis-open.org/committees/download.php/2290/oasis-sstc-
saml-1.0.zip

[OASIS-SigG] OASIS: “German Signature Law Profile of the OASIS Digital Signature
Service”, Version 1.0, http://docs.oasis-open.org/dss/v1.0/oasis-dss-
profiles_german_signature_law-spec-v1.0-os.pdf

Common PKI Part 7: Signature API Version 2.0

References Common PKI Part 7 – Page 82 of 83

[OASIS-VR] OASIS / D. Hühnlein: “Profile for comprehensive multi-signature
verification reports for OASIS Digital Signature Services Version 1.0”,
working draft, 05 May 2008, http://www.oasis-
open.org/committees/download.php/28182/2008_05_05_oasis-dss-
profile-for-comprehensive-signature-verification-report.doc

[PAOSv1.1] Liberty Alliance Project: “Liberty Reverse HTTP Binding for SOAP
Specification, Version v1.1”, http://www.projectliberty.org/liberty/
content/download/1219/7957/file/liberty-paos-v1.1.pdf

[RFC2045] N. Freed, N. Borenstein: “RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies”,
http://www.ietf.org/rfc/rfc2045.txt

[RFC3161] C. Adams, P. Cain, D. Pinkas, R. Zuccherato: “RFC 3161: Internet X.509
Public Key Infrastructure Time-Stamp Protocol (TSP)”,
http://www.ietf.org/rfc/rfc3161.txt

[RFC4998] T. Gondrom, R. Brandner, U. Pordesch: “RFC 4998: Evidence Record
Syntax (ERS)”, http://www.ietf.org/rfc/rfc4998.txt

[SOAPv1.1] W3C Note: “Simple Object Access Protocol (SOAP) 1.1”, 08 May 2000,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[TR-03112-1] BSI - Technische Richtlinie TR-03112-1: “eCard-API-Framework –
Teil 1 – Überblick und übergreifende Mechanismen”, Version 1.0, 03
March 2008, (in German language)

[TR-03112-2] BSI - Technische Richtlinie TR-03112-2: “eCard-API-Framework –
Teil 2 – eCard-Interface”, Version 1.0, 03 March 2008, (in German
language)

[TR-03112-3] BSI - Technische Richtlinie TR-03112-3: “eCard-API-Framework –
Teil 3 – Management-Interface”, Version 1.0, 03 March 2008, (in
German language)

[TR-03112-4] BSI - Technische Richtlinie TR-03112-4: “eCard-API-Framework –
Teil 4 – ISO24727-3-Interface”, Version 1.0, 03 March 2008, (in German
language)

[TR-03112-5] BSI - Technische Richtlinie TR-03112-5: “eCard-API-Framework –
Teil 5 – Support-Interface”, Version 1.0, 03 March 2008, (in German
language)

[TR-03112-6] BSI - Technische Richtlinie TR-03112-6: “eCard-API-Framework –
Teil 6 – Reader-Interface”, Version 1.0, 03 March 2008, (in German
language)

[TR-03112-7] BSI - Technische Richtlinie TR-03112-7: “eCard-API-Framework –
Teil 7 – Protokolle”, Version 1.0, 03 March 2008, (in German language)

[TS-102231] ETSI TS 102 231: “Provision of harmonized Trust Service Provider
(TSP) status information”

[WSDLv1.1] W3C Recommendation: “Web Services Description Language (WSDL)
Version 1.1”, http://www.w3.org/TR/wsdl

[XAdES] ETSI TS 101 903: “XML Advanced Electronic Signatures (XAdES)”,
V1.2.2 (2004-04)

[XMLDSig] W3C Recommendation: “XML Signature Syntax and Processing”, 10
June 2008, http://www.w3.org/TR/xmldsig-core/

Common PKI Part 7: Signature API Version 2.0

References Common PKI Part 7 – Page 83 of 83

[XMLEnc] W3C Recommendation: “XML Encryption Syntax and Processing”,
10 December 2002, http://www.w3.org/TR/xmlenc-core/

[XMLSchema] W3C Recommendation. “XML Schema” Part 0 to Part 2, 28 October
2004, http://www.w3.org/TR/xmlschema-0/, -1/ and-2/

[XSLv1.1] W3C Recommendation “Extensible Stylesheet Language (XSL) Version
1.1”, 05 December 2006, http://www.w3.org/TR/xsl

COMMON PKI SPECIFICATIONS
FOR INTEROPERABLE APPLICATIONS

FROM T7 & TELETRUST

 SPECIFICATION

PART 8

XML BASED MESSAGE FORMATS

VERSION 2.0 – 20 JANUARY 2009

Common PKI Part 8: XML based Message Formats Version 2.0

Contact Information Common PKI Part 8 – Page 2 of 36

Contact Information

The up-to-date version of the Common PKI specification can be downloaded from
www.common-pki.org or from www.common-pki.de
Please send comments and questions to common-pki@common-pki.org.

Editors of Common PKI specifications:

Hans-Joachim Bickenbach

Jürgen Brauckmann

Alfred Giessler

Tamás Horváth

Hans-Joachim Knobloch

© T7 e.V. and TeleTrusT e.V., 2002-2009

Common PKI Part 8: XML based Message Formats Version 2.0

Document History Common PKI Part 8 – Page 3 of 36

Document History

VERSION
DATE

CHANGES

1.0.2
27.10.2003

First public edition

1.1
16.03.2004

Several editorial changes.
1) Chapters 1 and 2 have been combined and renamed as Preface.
2) Chapter 5 has been integrated into Part 6 with the exception of canonicalization,

transforms, and decoding.
3) Superfluous references have been deleted.

1.1

13/10/2008

Incorporated all changes from Corrigenda to ISIS-MTT 1.1

2.0
20/Jan/2009

Name change from ISIS-MTT to Common PKI.
Renamed to “XML based Message Formats”-
Adapted to new versions of the base standards:

- ETSI TS 101 903 v1.3.2
- OASIS Standard 200401 (WS-Security 2004)
- RFC 3852
- X.509:2005
- http://www.w3.org/TR/2001/REC-xmlschema-1-20041028/
- http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/
- http://www.w3.org/TR/2008/REC-xmldsig-core -20080610/

Various corrections and clarifications.

Common PKI Part 8: XML based Message Formats Version 2.0

Table of Contents Common PKI Part 8 – Page 4 of 36

Table of Contents

1 Preface ... 5

2 XML Signature Format .. 7

2.1 Signature Element ..8

2.2 SignatureValue Element ..8

2.3 SignedInfo Element ..8

2.3.1 CanonicalizationMethod Element ..9
2.3.2 SignatureMethod Element ..11
2.3.3 Reference Element ...13

2.4 KeyInfo Element ..15

2.4.1 RetrievalMethod Element ..16
2.4.2 X509Data Element ..17

2.5 Object Element ...18

3 XML Encryption format... 19

3.1 EncryptedKey Element ..19

3.2 EncryptedDataType ...21

3.3 EncryptionMethodType ...23

4 Algorithm Support... 25

4.1 Cryptographic Algorithms ...25

4.2 Canonicalization...25

4.3 Transforms ...26

4.4 Decoding ..27

5 XML Schema Redefines .. 28

5.1 XML_DSIG Redefine ..28

5.2 XML_ENC Redefine ...33

References... 36

Common PKI Part 8: XML based Message Formats Version 2.0

Preface Common PKI Part 8 – Page 5 of 36

1 Preface

This part of the Common PKI specification provides the Common PKI profile for XML
signatures. The XML signature format conforms to the most widely accepted international
XML_DSIG standard [XML_DSIG] and to the OSCI-profile [OSCI]. OSCI has been issued
to trim the XML_DSIG format to the needs of eGovernment and allows wide interoperability
of the applications by restricting the formats and contents to a well-defined subset of possible
options allowed by XML_DSIG.

The Common PKI profile for XML signatures is based on [XML_DSIG], [XML_ENC], and
[XAdES]. It is also a general signature profile that is coherent to [OSCI]. OSCI as a SOAP
dialect is a specification that has strong roots in the public sector in Germany (and beyond)
and one of the aims of this profile is to harmonize Common PKI and OSCI. OSCI can now be
redefined as a special signature profile based on this Common PKI general XML signature
profile without any essential changes.

This Common PKI profile makes use of the redefine mechanism defined in [XML-
SCHEMA]. The redefine definitions in chapter 5 are the normative part of the specification.
The tables before that are the descriptive part. A difference to the other parts of Common PKI
is the fact that only those elements are described in tables that are actually profiled i.e.
restricted or re-defined.

The XAdES part is not profiled for the time being. It may become necessary to add more
definitions to this part with more experience and when requirements will become clearer.

A few notes on Web Service Security 1.0 [WS_SEC_2004]. There again a XML_DSIG
signature profile is defined much related to the special requirements of SOAP. Essentially the
distinctions to this profile are

1 Enveloped Signature and Enveloped Signature Transform are discouraged (“SHOULD
NOT”) by [WS_SEC_SOAP] because otherwise changes in SOAP headers might
destroy the signature.

2 SecurityTokenReference is a new field in the ds:KeyInfo element. There a WSS
Security Token may be inserted which can transport X.509 certificates as well as
kerberos tickets. The specification of WS Security – X.509 Token Profile
[WS_SEC_CERT] includes more data types to be contained in
wsse:SecurityTokenReference.

3 [WS_SEC_SOAP] recommends Exclusive XML Canonicalization and permits XML
Decryption Transform.

4 A special STR Dereference Transform in WS Security – SOAP Message Specification
[WS_SEC_SOAP] of OASIS

While all these are important features for the Web Service Security context they should not be
mandated in a general XML signature context because then all applications would have to
support the entire WS Security syntax. Also there is no reason for a general signature context
to forbid the enveloped form.

Common PKI Part 8: XML based Message Formats Version 2.0

Preface Common PKI Part 8 – Page 6 of 36

Finally a few notes on PDF and MS Office

• Current work at ETSI ESI aims at establishing PDF [ISO32000] as a third message
format for advanced signatures alongside CMS [CAdES] and XML [XAdES]. Once
that standardization process is stable and subject to a sufficient demand for further
profiling in that area, a Common PKI message profile for PDF may be specified in
addition to Parts 3 and 8.

• Microsoft has an implementation of XML_DSIG signatures in Infopath. As far as we
know so far this profile can be used in this environment.

In the following the format of XML digital signatures will be specified by means of XML
(Extensible Markup Language) and derived variants. Since it is the intention to profile the
W3C XMLDSIG recommendations we make use of the redefinition mechanism as in
[XML_SCHEMA]. In order to make the definitions made in this specification as transparent
as ever possible we make use of the same table oriented notification (see Introduction of the
Common PKI Specification) as in the other parts of the Common PKI specification. Inside the
tables we note the desired results, the normative schema redefinitions on XMLDSIG are given
in chapter 5 .

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 7 of 36

2 XML Signature Format

The following tables show the profile to XML_DSIG and XML_ENC in detail. Most of the differences are restrictions in the usage of elements,
attributes and algorithms in order to provide a narrow enough profile without loosing the flexibility of XML in general.

There are no restrictions in this profile on the use of enveloped, enveloping or detached forms of XML signatures. All three signature forms MUST be supported.

An area of concern is the usage of the RIPEMD algorithm. The Common PKI board would like to exclude RIPEMD for interoperability reasons. So wherever
you find RIPEMD referenced in the current document this is subject to exclusion in later versions. But we would like to invite comments on this special issue by
all those who may need to have the algorithm included.

Please note that in the “References” column you will find references to OSCI only for elements with differences between this Common PKI specification and
OSCI. It is one of the goals of this document to harmonize Common PKI and OSCI in a way that OSCI can (almost) without changes become a profile of this
Common PKI document. Hence only those definitions of OSCI have been discarded that do not fit into a general signature and encryption profile.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 8 of 36

2.1 Signature Element

Table 1: Signature Type

SUPPORT REFERENCES # XML_DSIG DEFINITION RESTRICTION

GEN PROC XML DSIG

NOTES

1 “SignatureType"
 <sequence>

No changes 4.1

2 <element ref="ds:SignedInfo"/> No changes 4.3

3 <element ref="ds:SignatureValue"/> No changes 4.2

4 <element ref="ds:KeyInfo” minOccurs="0"/> [minOccurs="0"] Excluded. ++ ++ 4.4 [1]

5 <element ref="ds:Object" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>

No changes 4.5

6 <attribute name="Id" type="ID" use="optional"/> No changes + + 4.1

[1] A KeyInfo element MUST be present in any signature conforming with Common PKI.

2.2 SignatureValue Element

No changes to the SignatureValue Element.

2.3 SignedInfo Element

No changes to the SignedInfo Element itself, only to children.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 9 of 36

2.3.1 CanonicalizationMethod Element

Table 2: CanonicalizationMethod Type

SUPPORT REFERENCES # XML_DSIG DEFINITION RESTRICTION

GEN PROC XML DSIG OSCI

NOTES

1 CanonicalizationMethodType
 <sequence>

No change

2 <any namespace="##any" minOccurs="0"

 maxOccurs="unbounded"/>

 </sequence>

 No Change [1]

3 <attribute name="Algorithm" type="anyURI"
use="required"/>

<xsd:enumeration
value="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315/"/>

- ++

4.3.1

++ [2]

[4]

4 <xsd:enumeration
value="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315/#WithComments"/>

 [2]

[4]

5 <xsd:enumeration
value="http://www.w3.org/2001/10/xml-exc -c14n#"/>

++ ++ -- [2]

[3]

6 <xsd:enumeration
value="http://www.w3.org/2001/10/xml-exc -
c14n#WithComments"/>

 [2]

[3]

7 <xsd:enumeration
value="http://www.w3.org/2006/12/xml-c14n11"/>

+ ++ [2]

[4]

8 <xsd:enumeration
value="http://www.w3.org/2006/12/xml-
c14n11#WithComments"/>

 [2]

[4]

[1] This restriction is suitable, because only [XML_C14N] and [XML_EXCAN] are allowed.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 10 of 36

[2] Canonicalization is the standard serialization method of XML. For definitions and usage of canonicalization in XML see [XML_C14N], [XML_C14N11] and
[XML_EXCAN] or follow the links noted in #3, #7 and #5.

All three algorithms MUST be supported by processing applications. Other canonicalization algorithms MUST NOT be used in conformance with Common PKI. This
delimits usage to the most common types and specifically rules out any proprietary algorithms.

Note: Although [XML_ C14N] has proved to be a valuable algorithm the fact that it includes ancestor namespace information makes it impractical in contexts where a
signed subdocument is to be extracted and used in some other context without breaking the signature. This has lead to the definition of [XML_EXCAN] where ancestor
context is excluded from serialization. For compatibility reasons with regard to many XML implementations [XML_C14N] is still to be supported but [XML_EXCAN]
should be used wherever applicable.

[3] Note: Exclusive Canonicalization was not existent when OSCI was defined. It has not yet been incorporated.

[4] [XML_DSIG] REQUIRES implementation of both Canonical XML 1.0 [XML_C14N] and Canonical XML 1.1 [XML_C14N11], but RECOMMENDS that applications
that generate signatures choose Canonical XML 1.1 [XML_C14N11] when inclusive canonicalization is desired.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 11 of 36

2.3.2 SignatureMethod Element

Table 3: SignatureMethod Type

SUPPORT REFERENCES # XML_DSIG DEFINITION RESTRICTION

GEN PROC XML DSIG

NOTES

1 SignatureMethodType
 <sequence>

No change

2 <element name="HMACOutputLength"

 minOccurs="0"
type="ds:HMACOutputLengthType"/>

No change - - [1]

3 <any namespace="##other" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>

No change

<xsd:enumeration

value="http://www.w3.org/2000/09/xmldsig#rsa-sha1"
/>

++ ++ [2]

<xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#ripemd160"

 />

- - [2]

[3]

4 <attribute name="Algorithm" type="anyURI"
use="required"/>

<xsd:enumeration

value="http://www.w3.org/2000/09/xmldsig#dsa-sha1"
/>

++ ++

4.3.2

[2]

[1] Common PKI Profile: As noted in chapter 2.4.2 the only way to handle keys in this profile is X.509 certificates. This makes HMAC obsolete and we discourage usage of
HMAC entirely for the time being. Conforming clients SHOULD NOT make use of HMAC.

The reason why we do not exclude the element in this profile is the fact that it is used with good reasons in [XKMS_REQ]. It may happen that in the future XKMS will
become important for Common PKI and thus HMAC may return. So leaving it here will perhaps then make things a little easier.

[2] Delimits the possible algorithms toDSA-SHA1, RSA-SHA1 and RSA-RIPEMD160.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 12 of 36

[3] Common PKI Profile: Although RIPEMD160 remains a suitable hash algorithm it will no longer be included as mandatory neither on the generating nor on the
processing side in the next version of Common PKI. This is due to the fact that a great number of applications are practically declared non conforming to this profile
because they do not implement RIPEMD160. So we discourage the usage of RIPEMD160 already in this version of the profile. Conforming clients SHOULD NOT make
use of RIPEMD160. Conforming clients are not expected to support RIPEMD160 except for those that support OSCI 1.2.

Important Note: For a coherent status in OSCI 1.2 and this profile RIPEMD160 will stay in this specification until it will be excluded from OSCI in the new upcoming
version which is announced for beginning of 2005.

Note that in OSCI a different URI is defined: http://www.osci.de/2002/04/osci#ripemd160 There is no difference in their meaning so Clients SHOULD interpret this URI
as being identical to the URI named in this specification.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 13 of 36

2.3.3 Reference Element

Table 4: Reference Type

SUPPORT REFERENCES # XML_DSIG DEFINITION RESTRICTION

GEN PROC XML DSIG

NOTES

1 ReferenceType
<sequence>

No change

2 <element ref="ds:Transforms" minOccurs="0"/> No change

3 <element ref="ds:DigestMethod"/> No change

4 <element ref="ds:DigestValue"/>
</sequence>

No change

5 <attribute name="Id" type="ID" use="optional"/> No change

6 <attribute name="URI" type="anyURI"
 use="optional"/>

No change [1]

7 <attribute name="Type" type="anyURI"
 use="optional"/>

No change

4.3.3

[1] XML_DSIG: The allowed types of the URI are not specified in [XML_DSIG]. HTTP is RECOMMENDED.

Common PKI Profile: URIs of types HTTP, HTTPS and LDAP are RECOMMENDED. For LDAP see also Common PKI Part 4, Chapter 7.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 14 of 36

2.3.3.1 DigestMethod Element

Table 5: DigestMethod Type

SUPPORT REFERENCES # XML_DSIG DEFINITIO N RESTRICTION

GEN PROC XML DSIG

NOTES

1 DigestMethodType
<sequence>

No changes

2 <any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

</sequence>

Excluded

3 <attribute name="Algorithm" type="anyURI"
 use="required"/>

<xsd:enumeration

value="http://www.w3.org/2000/09/xmldsig#sha1" />

++ ++ [1]

4 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#ripemd160”
/>

- -

4.3.3.5

[2]

[1] Delimits the possible algorithms to SHA1 and RIPEMD160.

[2] Common PKI Profile: See Table 3 Annotation [3] on exclusion of RIPEMD160

Note that in OSCI a different URI is defined: http://www.osci.de/2002/04/osci#ripemd160 There is no difference in their meaning, so Clients SHOULD interpret this URI
as being identical to the URI named in this specification.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 15 of 36

2.4 KeyInfo Element

Note that the restriction to allow in this element only X.509 type key data is a restriction not only for this element but also for the entire profile.
X.509 certificates and related protocols to be used are described in Common PKI Parts 1-5 and 7 and possibly in the optional SigG profile.

Table 6: KeyInfo Type

SUPPORT REFERENCES # XML_DSIG DEFINITION RESTRICTION

GEN PROC XML DSIG

NOTES

1 KeyInfoType
<choice maxOccurs="unbounded">

No change

2 <element ref="ds:KeyName"/> Excluded -- --

3 <element ref="ds:KeyValue"/> Excluded -- --

4 <element ref="ds:RetrievalMethod"/> No change [1]

5 <element ref="ds:X509Data"/> No change [2]

6 <element ref="ds:PGPData"/> Excluded -- --

7 <element ref="ds:SPKIData"/> Excluded -- --

8 <element ref="ds:MgmtData"/> Excluded -- --

9 <xsd:element ref="xenc:EncryptedKey" /> ++ ++ [3]

10 <xsd:element ref="xenc:AgreementMethod" /> +- +- [4]

11 <any processContents="lax"
 namespace="##other"/>
</choice>

Excluded

4.4

[1] This leaves the usage of RetrievalMethod open, which will in turn be delimited to X509Data in T7.#4

[2] Common PKI Profile: The only way of storing KeyInfo data is X509Data for coherence with the rest of the Common PKI specification.

[3] OSCI conformance; to be clarified by OSCI

[4] XML_ENC: To support Diffie -Hellman key agreement for encrypting data, see also P6.T6 and [XML_ENC] chapter 5.5.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 16 of 36

2.4.1 RetrievalMethod Element

Table 7: RetrievalMethod Type

SUPPORT REFERENCES # XML_DSIG DEFINITION RESTRICTION

GEN PROC XMLDSIG

NOTES

1 RetrievalMethodType
<sequence>

No change

2 <element ref="ds:Transforms" minOccurs="0"/>

</sequence>

No change

3 <attribute name="URI" type="anyURI"/> use=”required” ++ ++ [1]

4 <attribute name="Type" type="anyURI"
 use="optional"/>

<xsd:enumeration
value="http://www.w3.org/2000/09/xmldsig#X509Data"
/>

++ ++ [1]

[1] Common PKI Profile: Any usage of the (optional) RetrievalMethod MUST use X509Data. All other types MUST NOT be used.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 17 of 36

2.4.2 X509Data Element

Table 8: X509Data Type

SUPPORT REFERENCES # XML_DSIG DEFINITION RESTRICTION

GEN PROC XMLDSIG OSCI

NOTES

1 X509DataType
<sequence maxOccurs="unbounded">
 <choice>

No change ++ ++ ++ [1]

2 <element name="X509IssuerSerial"

 type="ds:X509IssuerSerialType"/>

No change + + -- [2]

3 <element name="X509SKI"
 type="base64Binary"/>

Excluded -- -- --

4 <element name="X509SubjectName"
 type="string"/>

Excluded -- -- --

5 <element name="X509Certificate"
 type="base64Binary"/>

No change ++ ++ ++ [3]

6 <element name="X509CRL"
 type="base64Binary"/>

No change + + -- [4]

8 <any namespace="##other"
 processContents="lax"/>
 </choice>
</sequence>

Excluded -- --

4.4.4

--

[1] Note that OSCI delimits the number of possible entries to 1.

[2] Note that OSCI does not allow this element.

[3] This is the place to store the certificate chain in the same way as described in Common PKI Part 3, T2.#4.

[4] For coherence with the rest of the Common PKI specification not only CRLs need to be stored but also OCSP responses. Rather than introducing a new type we
RECOMMEND usage of XAdES (see following chapter) in case an OCSP response needs to be stored.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Signature Format Common PKI Part 8 – Page 18 of 36

2.5 Object Element

For compatibility reasons the above definitions are strictly delimited to profiling [XML_DSIG]. Still there are a number of data elements present in
other message formats (CMS as in Common PKI part 3) like e.g. signed and unsigned attributes which are not part of [XML_DSIG]. In order to
provide this information also in the XML signature world [XAdES] has been defined as an enriching profile to [XML_DSIG]. Rather than to start
new definition work in this area Common PKI references [XAdES]. Common PKI conforming applications SHOULD make use of [XAdES] as an
optional extension of [XML_DSIG].

[XAdES] introduces additional structures within the Object element in much the same way as they are handled in CMS [RFC3852]. It also supports
additional variants for long-term archival of signatures etc. Since all these elements are handled within the present Object element in a coherent and
well defined way they do not interfere with any of the above definitions.

Note: Usually an optional element on the signature generation side has to be mandatory on the processing side since there is no way of knowing
what kind of a signature will have to be processed. The intention here is a little weaker than this: If for an application additional data are important
we want to impose the usage of [XAdES] for this purpose rather than usage of proprietary or other definitions. But an application not making use of
[XAdES] at all can still claim conformance with this profile. The result will be two different types of Common PKI signatures: with and without
[XAdES]. We think that this is a valid approach at the time being but we would like to invite for comments on this issue.

As a processing rule Common PKI conforming clients that support XAdES MUST be able to process signatures without any of the XAdES
elements present. Also Common PKI conforming clients SHOULD include the signing certificate data into the KeyInfo element. This enables non-
XAdES clients to process “raw” XML signatures without being able to process the special XAdES elements. But we would not usually encourage
clients to do so because it can be assumed that the additional XAdES signature attributes are of importance and there is no way of correct
interpretation without understanding the format.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Encryption Format Common PKI Part 8 – Page 19 of 36

3 XML Encryption format

3.1 EncryptedKey Element

Table 9: EncryptedKeyType

SUPPORT REFERENCES # XML_ENC DEFINITION RESTRICTION

GEN PROC XML ENC

NOTES

1 EncryptedKeyType No change

2 <extension base='xenc:EncryptedType'>
 <sequence>

No change 3.5.1

3 <complexType name='EncryptedType'

 abstract='true'>

 <sequence>

No change

4 <element name='EncryptionMethod'

 type='xenc:EncryptionMethodType'

 minOccurs='0'/>

minOccurs="1" ++ ++ [1]

5 <element ref='ds:KeyInfo' minOccurs='0'/> minOccurs="1" ++ ++ [1]

6 <element ref='xenc:CipherData'/> minOccurs="1" ++ ++ [1]

7 <element ref='xenc:EncryptionProperties'

 minOccurs='0'/>

 </sequence>

Excluded -- -- [1]

8 <attribute name='Id' type='ID' use='optional'/> No change +- ++ [1]

9 <attribute name='Type' type='anyURI'

 use='optional'/>

Excluded -- -- [1]

10 <attribute name='MimeType' type='string'

 use='optional'/>

Excluded -- --

3.1

[1]

Common PKI Part 8: XML based Message Formats Version 2.0

XML Encryption Format Common PKI Part 8 – Page 20 of 36

11 <attribute name='Encoding' type='string'

 use='optional'/>

Excluded -- -- [1]

12 <element ref='xenc:ReferenceList'
 minOccurs='0'/>

Excluded -- -- [1]

13 <element name='CarriedKeyName'
 type='string' minOccurs='0'/>
 </sequence>

Excluded -- -- [1]

14 <attribute name='Recipient' type='string'
 use='optional'/>
 </extension>

Excluded -- --

3.5.1

[1]

[1] Common PKI Profile: In order to create strict interoperability rules encrypted keys plus their reference data MUST be stored in #4 - #6. All other ways MUST NOT be
used.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Encryption Format Common PKI Part 8 – Page 21 of 36

3.2 EncryptedDataType

Table 10: EncryptedData Type

SUPPORT REFERENCES # XML_ENC DEFINITION RESTRICTION

GEN PROC XML ENC

NOTES

1 EncryptedDataType No change

2 <extension base='xenc:EncryptedType'> No change

3 <complexType name='EncryptedType'

 abstract='true'>

 <sequence>

No change [1]

4 <element name='EncryptionMethod'

 type='xenc:EncryptionMethodType'

 minOccurs='0'/>

No change [1]

5 <element ref='ds:KeyInfo' minOccurs='0'/> No change [1]

6 <element ref='xenc:CipherData'/> minOccurs="1" ++ ++ [1]

7 <element ref='xenc:EncryptionProperties'

 minOccurs='0'/>

 </sequence>

Excluded [1]

8 <attribute name='Id' type='ID' use='optional'/> No change [1]

9 <attribute name='Type' type='anyURI'

 use='optional'/>

Excluded [1]

10 <attribute name='MimeType' type='string'

 use='optional'/>

No change

11 <attribute name='Encoding' type='string'

 use='optional'/>

Excluded

3.4

[1]

Common PKI Part 8: XML based Message Formats Version 2.0

XML Encryption Format Common PKI Part 8 – Page 22 of 36

[1] Common PKI Profile: In order to create strict interoperability rules encrypted keys plus their reference data MUST be stored in #3 - #5. All other ways MUST NOT be
used.

Common PKI Part 8: XML based Message Formats Version 2.0

XML Encryption Format Common PKI Part 8 – Page 23 of 36

3.3 EncryptionMethodType

Table 11: EncryptionMethod Type

SUPPORT REFERENCES # XML_ ENC DEFINITION RESTRICTION

GEN PROC XML ENC

NOTES

1 EncryptionMethodType
 <sequence>

No change

2 <element name='KeySize' minOccurs='0'

 type='xenc:KeySizeType'/>

No change

3 <any namespace='##other' minOccurs='0'
 maxOccurs='unbounded'/>
 </sequence>

Excluded [1]

4 <attribute name='Algorithm' type='anyURI'
 use='required'/>

No change

5 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />

 [1]

6 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#aes128-cbc" />

 [1]

7 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#aes192-cbc" />

 [1]

8 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

 [1]

9 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />

 [1]

10 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p"
/>

3.2

[1]

Common PKI Part 8: XML based Message Formats Version 2.0

XML Encryption Format Common PKI Part 8 – Page 24 of 36

11 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#kw-tripledes" />

 [1]

12 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#kw-aes128" />

 [1]

13 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#kw-aes192" />

 [1]

14 <xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#kw-aes256" />

 [1]

[1] Common PKI Profile: Encryption methods are delimited to the enumerated list provided in #5 - #9. Other methods MUST NOT be used.

Common PKI Part 8: XML based Message Formats Version 2.0

Algorithms Support Common PKI Part 8 – Page 25 of 36

4 Algorithm Support

4.1 Cryptographic Algorithms

Cryptographic algorithms required and/or recommended by this part of the Common PKI specification are listed in Part 6 “Cryptographic
Algorithms” of the Common PKI Specification.
Most of the algorithms required for XML are referenced in [XML_DSIG] and [XML_ENC].

4.2 Canonicalization

Table 12: Canonicalization Algorithms

ALGORITHMS COMMON PKI SUPPORT

NAME SEMANTICS

REFERENCES

GEN PROC VALUES

NOTES

1.1 Canonical XML Canonicalization algorithm [XML_DSIG]
[XML_ C14N]

- ++ http://www.w3.org/TR/2001/REC-xml-c14n-20010315 [2]

1.2 Canonical XML with
Comments

Canonicalization algorithm [XML_DSIG]
[XML_ C14N]

- + http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments

[2]

1.3 Exclusive XML
Canonicalization

Canonicalization algorithm [XML_ENC]
[XML_EXCAN]

++ ++ http://www.w3.org/2001/10/xml-exc -c14n# [1]

1.4 Exclusive XML
Canonicalization with
Comments

Canonicalization algorithm [XML_ENC]
[XML_EXCAN]

+- + http://www.w3.org/2001/10/xml-exc -c14n#WithComments [1]

1.5 Canonical XML Version
1.1

Canonicalization algorithm [XML_DSIG]
[XML_C14N11]

+ ++ http://www.w3.org/2006/12/xml-c14n11 [2]

1.6 Canonical XML Version
1.1 with Comments

Canonicalization algorithm [XML_DSIG]
[XML_C14N11]

+- + http://www.w3.org/2006/12/xml-c14n11#WithComments [2]

[1] Not specified in [XML_DSIG]

[2] [XML_DSIG] REQUIRES implementation of both Canonical XML 1.0 [XML_C14N] and Canonical XML 1.1 [XML_C14N11], but RECOMMENDS that applications
that generate signatures choose Canonical XML 1.1 [XML_C14N11] when inclusive canonicalization is desired.

Common PKI Part 8: XML based Message Formats Version 2.0

Algorithms Support Common PKI Part 8 – Page 26 of 36

4.3 Transforms

Transforms are processing steps that convert the input after dereferencing the URI into another representation that is to be signed/verified. As
Transforms are a very powerful tools to transform content, it is important to operate only on the transformed content after a signature validation,
because only the transformed content is secured by the signature. See [XML_DSIG, Chapter 8.1].

Table 13: Transform Algorithms

ALGORITHMS COMMON PKI SUPPORT

NAME SEMANTICS

REFERENCES

GEN PROC VALUES

NOTES

1.1 Canonical XML Canonicalization algorithm [XML_DSIG]
[XML_ C14N]

- ++ http://www.w3.org/TR/2001/REC-xml-c14n-20010315 [2]

1.2 Base64 Base 64 Decoding [XML_DSIG]

[MIME]

++ ++ http://www.w3.org/2000/09/xmldsig#base64

1.3 XPath XML Path Language [XML_DSIG]
[XPATH]

+ + http://www.w3.org/TR/1999/REC-xpath-19991116

1.4 XPath Filter 2.0 XML Signature XPath
Filter 2.0

[XPATH_FILT] +- +- http://www.w3.org/2002/06/xmldsig-filter2

1.5 Enveloped Signature
Transform

 [XML_DSIG]

++ ++ http://www.w3.org/2000/09/xmldsig#enveloped-signature

1.6 XSLT XSL Transform [XML_DSIG]
[XSLT]

+ + http://www.w3.org/TR/1999/REC-xslt-19991116 [1]

1.7 Exclusive XML
Canonicalization

Canonicalization algorithm [XML_EXCAN] ++ ++ http://www.w3.org/2001/10/xml-exc -c14n#

1.8 Canonical XML
Version 1.1

Canonicalization algorithm [XML_DSIG]
[XML_C14N11]

+ ++ http://www.w3.org/2006/12/xml-c14n11 [2]

[1] Note that when XSLT is used it is particularly important to rely only on those portions of an XML document that are actually secured by the signature.

[2] [XML_DSIG] REQUIRES implementation of both Canonical XML 1.0 [XML_C14N] and Canonical XML 1.1 [XML_C14N11], but RECOMMENDS that applications
that generate signatures choose Canonical XML 1.1 [XML_C14N11] when inclusive canonicalization is desired.

Common PKI Part 8: XML based Message Formats Version 2.0

Algorithms Support Common PKI Part 8 – Page 27 of 36

4.4 Decoding

Table 14: Decoding Algorithms

ALGORITHMS COMMON PKI SUPPORT

NAME SEMANTICS

REFERENCES

GEN PROC VALUES

NOTES

1.1 Base64 Decoding algorithm [XML_DSIG]
[MIME]

++ ++ http://www.w3.org/2000/09/xmldsig#base64

Common PKI Part 8: XML based Message Formats Version 2.0

XML Schema Redefines Common PKI Part 8 – Page 28 of 36

5 XML Schema Redefines

5.1 XML_DSIG Redefine
<?xml version="1.0" encoding="utf-8"?>
<xsd:schema targetNamespace="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" elementFormDefault="qualified">

 <xsd:import namespace="http://www.w3.org/2001/04/xmlenc#"
 schemaLocation="oscienc.xsd" />

 <xsd:annotation>
 <xsd:documentation xml:lang="de">

 Common PKI – Restrictions for XML DSIG
Based on OSCI 1.2

 </xsd:documentation>
 </xsd:annotation>
 <!-- ### redefinitions ### -->
 <xsd:redefine schemaLocation="http://www.w3.org/TR/2008/CR-xmldsig-core-20080610/xmldsig-core -schema.xsd">

 <xsd:complexType name="KeyInfoType">
 <xsd:complexContent>

 <xsd:restriction base="ds:KeyInfoType">
 <xsd:choice>

 <xsd:element ref="xenc:EncryptedKey" />
 <xsd:element ref="ds:RetrievalMethod" />
 <xsd:element ref="ds:X509Data" />

 </xsd:choice>
 <xsd:attribute name="Id" type="xsd:ID" use="optional" />

 </xsd:restriction>
 </xsd:complexContent>

 </xsd:complexType>
 <xsd:complexType name="SignatureType">

 <xsd:complexContent>
 <xsd:restriction base="ds:SignatureType">

 <xsd:sequence>
 <xsd:element ref="ds:SignedInfo" />
 <xsd:element ref="ds:SignatureValue" />

Common PKI Part 8: XML based Message Formats Version 2.0

XML Schema Redefines Common PKI Part 8 – Page 29 of 36

 <xsd:element ref="ds:KeyInfo" />
 <xsd:element ref="ds:Object"

 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>

 </xsd:restriction>
 </xsd:complexContent>

 </xsd:complexType>
 <xsd:complexType name="RetrievalMethodType">

 <xsd:complexContent>
 <xsd:restriction base="ds:RetrievalMethodType">

 <xsd:attribute name="URI" type="xsd:anyURI" use="required" />
 <xsd:attribute name="Type">

 <xsd:simpleType>
 <xsd:restriction base="xsd:anyURI">

 <xsd:enumeration value="http://www.w3.org/2000/09/xmldsig#X509Data" />
 </xsd:restriction>

 </xsd:simpleType>
 </xsd:attribute>

 </xsd:restriction>
 </xsd:complexContent>

 </xsd:complexType>
 <xsd:complexType name="X509DataType">

 <xsd:complexContent>
 <xsd:restriction base="ds:X509DataType">

 <xsd:sequence maxOccurs="1">
 <xsd:choice>

<xsd:element name="X509IssuerSerial" type="ds:X509IssuerSerialType"/>
<xsd:element name="X509Certificate" type="xsd:base64Binary" />
<xsd:element name="X509CRL" type="xsd:base64Binary" />

</xsd:choice>
</xsd:sequence>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="CanonicalizationMethodType">

<xsd:complexContent>
<xsd:restriction base="ds:CanonicalizationMethodType">

<xsd:attribute name="Algorithm" use="required">
<xsd:simpleType>

Common PKI Part 8: XML based Message Formats Version 2.0

XML Schema Redefines Common PKI Part 8 – Page 30 of 36

<xsd:restriction base="xsd:anyURI">
<xsd:enumeration

value="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
<xsd:enumeration

value="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments" />

<xsd:enumeration

value="http://www.w3.org/2001/10/xml-exc -c14n#" />

<xsd:enumeration

value="http://www.w3.org/2001/10/xml-exc -c14n#WithComments" />

<xsd:enumeration

value="http://www.w3.org/2006/12/xml-c14n11" />

<xsd:enumeration

value="http://www.w3.org/2006/12/xml-c14n11#WithComments" />
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="TransformType" mixed="true">

<xsd:complexContent>
<xsd:restriction base="ds:TransformType">

<xsd:attribute name="Algorithm" use="required">
<xsd:simpleType>

<xsd:restriction base="xsd:anyURI">
<xsd:enumeration

value="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
<xsd:enumeration

value="http://www.w3.org/2000/09/xmldsig#base64" />
<xsd:enumeration

value="http://www.w3.org/TR/1999/REC-xpath-19991116" />
<xsd:enumeration

Common PKI Part 8: XML based Message Formats Version 2.0

XML Schema Redefines Common PKI Part 8 – Page 31 of 36

value="http://www.w3.org/2002/06/xmldsig-filter2" />
<xsd:enumeration

value="http://www.w3.org/2000/09/xmldsig#enveloped-signature" />
<xsd:enumeration

value="http://www.w3.org/TR/1999/REC-xslt-19991116" />
<xsd:enumeration

value="http://www.w3.org/2001/10/xml-exc -c14n#" />
<xsd:enumeration

value="http://www.w3.org/2006/12/xml-c14n11" />
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="DigestMethodType">

<xsd:complexContent>
<xsd:restriction base="ds:DigestMethodType">

<xsd:attribute name="Algorithm" use="required">
<xsd:simpleType>

<xsd:restriction base="xsd:anyURI">
<xsd:enumeration

value="http://www.w3.org/2000/09/xmldsig#sha1" />
<xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#sha256" />
<xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#sha512" />
<xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#ripemd160" />
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="SignatureMethodType">

<xsd:complexContent>

Common PKI Part 8: XML based Message Formats Version 2.0

XML Schema Redefines Common PKI Part 8 – Page 32 of 36

<xsd:restriction base="ds:SignatureMethodType">
<xsd:attribute name="Algorithm" use="required">

<xsd:simpleType>
<xsd:restriction base="xsd:anyURI">

<xsd:enumeration
value="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<xsd:enumeration
value=" http://www.w3.org/2001/04/xmldsig-more#rsa-sha256" />

<xsd:enumeration
value=" http://www.w3.org/2001/04/xmldsig-more#rsa-sha512" />

<xsd:enumeration
value=" http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160" />

<xsd:enumeration
value="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />

</xsd:restriction>
</xsd:simpleType>

 </xsd:attribute>
</xsd:restriction>

</xsd:complexContent>
</xsd:complexType>

</xsd:redefine>
</xsd:schema>

Common PKI Part 8: XML based Message Formats Version 2.0

XML Schema Redefines Common PKI Part 8 – Page 33 of 36

5.2 XML_ENC Redefine
<?xml version="1.0" encoding="utf-8"?>
<xsd:schema targetNamespace="http://www.w3.org/2001/04/xmlenc#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#" elementFormDefault="qualified">

 <xsd:annotation>
 <xsd:documentation xml:lang="de">

 Common PKI – Restrictions for XML Encryption
Based on OSCI 1.2

</xsd:documentation>
</xsd:annotation>
<!-- ### redefinitions ### -->
<xsd:redefine schemaLocation="http://www.w3.org/TR/xmlenc-core/xenc-schema.xsd">

<xsd:complexType name="EncryptionMethodType">
<xsd:complexContent>

<xsd:restriction base="xenc:EncryptionMethodType">
<xsd:sequence>

<xsd:element name="KeySize" minOccurs="0" type="xenc:KeySizeType" />
<xsd:element name='OAEPparams' minOccurs='0' type='base64Binary'/>

</xsd:sequence>
<xsd:attribute name="Algorithm" use="required">

<xsd:simpleType>
<xsd:restriction base="xsd:anyURI">

<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />

<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#aes128-cbc" />

<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#aes192-cbc" />

<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

<xsd:enumeration
value="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />

<xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p" />

Common PKI Part 8: XML based Message Formats Version 2.0

XML Schema Redefines Common PKI Part 8 – Page 34 of 36

<xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#kw-tripledes" />

<xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#kw-aes128" />

<xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#kw-aes192" />

<xsd:enumeration

value="http://www.w3.org/2001/04/xmlenc#kw-aes256" />
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="EncryptedDataType">

<xsd:complexContent>
<xsd:restriction base="xenc:EncryptedDataType">

<xsd:sequence>
<xsd:element name="EncryptionMethod"

type="xenc:EncryptionMethodType" minOccurs="0" />
<xsd:element ref="ds:KeyInfo" minOccurs="0" />
<xsd:element ref="xenc:CipherData" minOccurs="1" />

</xsd:sequence>
<xsd:attribute name="MimeType" type="xsd:string" use="optional" />
<xsd:attribute name='Id' type='ID' use='optional'/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="EncryptedKeyType">

<xsd:complexContent>
<xsd:restriction base="xenc:EncryptedKeyType">

<xsd:sequence>
<xsd:element name="EncryptionMethod"

type="xenc:EncryptionMethodType" minOccurs="1" />
<xsd:element ref="ds:KeyInfo" minOccurs="1" />
<xsd:element ref="xenc:CipherData" minOccurs="1" />

Common PKI Part 8: XML based Message Formats Version 2.0

XML Schema Redefines Common PKI Part 8 – Page 35 of 36

</xsd:sequence>
<xsd:attribute name='Id' type='ID' use='optional'/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
</xsd:redefine>

 </xsd:schema>

Common PKI Part 8: XML based Message Formats Version 2.0

References Common PKI Part 8 – Page 36 of 36

References

[CAdES] ETSI TS 101 733 v1.7.4: Electronic Signatures and Infrastructures (ESI); CMS
Advanced Electronic Signatures (CAdES), July 2008

[ISO32000] ISO 32000-1:2008: Document management -- Portable document format --
Part 1: PDF 1.7

[MIME] N. Freed & N. Borenstein: „Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies.“, RFC2045, November 1996

[OSCI] OSCI Leitstelle: OSCI Transport, Version 1.2, Bremen, 6. Juni 2002
[RFC3852] R. Housley: Cryptographic Message Syntax (CMS), RFC 3852, July 2004
[WS_SEC_2004] OASIS Open: Web Services Security 1.0, OASIS Standard 200401, March

2004, http://www.oasis-open.org/specs/#wssv1.0
[WS_SEC_SOAP] OASIS Open: Web Services Security: SOAP Message Security 1.0 (WS-

Security 2004), OASIS Standard 200401, March 2004
[WS_SEC_CERT] OASIS Open: Web Services Security X.509 Certificate Token Profile, OASIS

Standard 200401, March 2004
[X.509] ITU-T X.509: Information technology – Open Systems Interconnection – The

Directory: Public -key and attribute certificate frameworks, 2005
[XAdES] ETSI TS 101 903 V1.3.3 (2007-02): XML Advanced Electronic Signatures

(XAdES), Technical Specification
[XKMS_REQ] W3C: XML Key Management (XKMS 2.0) Requirements, 05 May 2003

http://www.w3.org/TR/2003/NOTE-xkms2-req-20030505
[XML_C14N] W3C: Canonical XML 1.0, 15 March 2001,

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
[XML_C14N11] W3C: Canonical XML 1.1. 2 May 2008,

http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/
[XML_DSIG] W3C: XML-Signature Syntax and Processing (Second Edition), 10 June 2008,

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
[XML_ENC] W3C: „XML Encryption Syntax and Processing“, 10 December 2002,

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
[XML_EXCAN] W3C: Exclusive XML Canonicalization 1.0, 18 July 2002,

http://www.w3c.org/TR/2002/REC-xml-exc-c14n-20020718/
[XML_SCHEMA] W3C: XML Schema Part 1: Structures Second Edition, 28 October 2004.

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
[XML_SCHEMA2] W3C: XML Schema Part 2: Datatypes, 02 May 2001.

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
[XPATH] W3C: XML Path Language, Version 1.0, October 1999

http://www.w3.org/TR/1999/REC-xpath-19991116
[XPATH_FILT] W3C: XML-Signature XPath Filter 2.0, November 2002

http://www.w3.org/TR/2002/REC-xmldsig-filter2-20021108/
[XSLT] W3C: XSL Transforms, Version 1.0, November 1999

http://www.w3.org/TR/1999/REC-xslt-19991116

COMMON PKI SPECIFICATIONS
FOR INTEROPERABLE PKI APPLICATIONS

FROM T7 & TELETRUST

 SPECIFICATION

PART 9

SIGG-PROFILE

VERSION 2.0 – 20 JANUARY 2009

Common PKI Part 9: SigG-Profile Version 2.0

Contact Information Common PKI Part 9 – Page 2 of 30

Contact Information

The up-to-date version of the Common PKI specification can be downloaded from
www.common-pki.org or from www.common-pki.de
Please send comments and questions to common-pki@common-pki.org.

Editors of Common PKI specifications:

Hans-Joachim Bickenbach

Jürgen Brauckmann

Alfred Giessler

Tamás Horváth

Hans-Joachim Knobloch

© T7 e.V. and TeleTrusT e.V., 2002-2009

Common PKI Part 9: SigG-Profile Version 2.0

Document History Common PKI Part 9 – Page 3 of 30

Document History

VERSION
DATE

CHANGES

1.0
30.09.2001

First public edition

1.0.1
15.11.2001

A couple of editorial and stylistic changes:
- references to SigG-specific issues eliminated from core documents
- core documents (Part 1-7) and optional profiles have been separated in different PDF

documents.
1.0.2
19.07.2002

Several editorial changes and bug-fixes. The most relevant changes affecting technical aspects
are:
1) The DName attribute nameDistinguisher, used in legacy systems and older PKCs, MUST be

supported by processing applications in issuer and subject names. (T1.#18)
2) DName attributes in Procuration limited to RFC3039 attributes. (T4.#7,[2])
3) QcEuLimitValue may be included in an AC as attribute in place of MonetaryLimit.

(T10.#10,[2])
4) Table 12 contains all OIDs defined for ISIS-MTT
5) Profiling information with respect to Part 5 added to adopt validity model to SigG. (Section

3)
1.0.2
11.08.2003

Incorporated all changes from Corrigenda version 1.2

1.1
16.03.2004

Several editorial changes and bug-fixes. The most relevant changes affecting technical aspects
are:
1) The policy identifier id-Co. PKI-cp-sigGconform has been renamed to id-Co. PKI-cp-

accredited in order to better reflect the correct semantics.
2) Added a new extension/attribute AdditionalInformation .
3) Added a new section about algorithms
4) The permitted size if an ICCSN was increased to 20 octets (corresponding to the decimal

character representation of a 64 bit value).
5) Definitions of ISIS-MTT private attributes for attribute certificates have been moved from

the optional SigG Profile to core Part 1.
6) Key usage has been aligned with ETSI TS 102 280.
7) The qualified certificate statement QcSSCD has been added to the list of QCs.
8) Added profession OID values for the Admission attribute.

1.1

13/10/2008

Incorporated all changes from Corrigenda to ISIS-MTT 1.1

2.0
20/Jan/2009

Name change from ISIS-MTT to Common PKI.
Included optional private OCSP extensions of the ISIS-MTT v1.1 SigG Options profile.
Reflected name change of RegTP to BNetzA.
Adapted to new versions of the base standards:

- RFC 3739

- RFC 5280

- BNetzA Notification 2008

- ETSI TS 101 456 v1.4.3

- ETSI TS 101 862 v1.3.3

Various corrections and clarifications.

Common PKI Part 9: SigG-Profile Version 2.0

Table of Content s Common PKI Part 9 – Page 4 of 30

Table of Contents

1 Preface... 5

1.1 Interoperability Aspects ..5

1.2 Requirements on technical components...6

2 Certificate and CRL Formats.. 8

2.1 Public Key Certificate Format..8

2.2 Attribute Certificate Format...16

2.3 CRL Format ...17

2.4 Common PKI Object Identifiers ..18

3 LDAP... 19

4 OCSP... 20

5 TSP.. 24

6 Certificate Path Validation.. 25

7 Algorithms... 29

References... 30

Common PKI Part 9: SigG-Profile Version 2.0

Preface Common PKI Part 9 – Page 5 of 30

1 Preface

The German Signature Act (SigG) and the Ordinance on Digital Signatures (SigV) raise a
couple of special requirements on technical components as well as on the certificate policy of
certification service providers (CSPs). This profile addresses these technical requirements.
These requirements affect certificate contents, CSP service protocols as well as the validity
model, implied by the SigG. Besides providing means to fulfil technical requirements,
induced by the SigG, this profile specifies new certificate contents, in form of private
extensions and attributes, required in common business cases that rely on the legal
instruments of the SigG.
This profile is intended for system and application developers who intend to design
components that:

- fulfil the requirements induced by the SigG and the SigV on technical means;
- should either be employed in the technical arsenal of CSPs that provide qualified

services in the context of SigG and either aspire an accreditation in the sense of the
SigG, or intend to operate without an accreditation;

- or in end-entity components in SigG-related applications that rely on the qualified
services of either accredited or non-accredited CSPs.

- interoperate with PKIs and components designed to comply with the other Common
PKI Parts.

The association T7 e.V. of accredited CSP commits itself to this profile, i.e. services and
technical components provided by accredited CSP MUST comply with this profile. Non-
accredited CSP and third-party software manufactures MAY choose to comply with this
profile.
The SigG Profile in this Part of Common PKI is defined in form of a delta-specification with
regard to the general Common PKI profile as laid down in Part 1 to 8. That latter general
Common PKI profile is hereinafter referenced as “Core” profile. For reference purposes,
different requirements in the Core profile of Part 1 to 8 are marked by the prefix CORE below.

1.1 Interoperability Aspects

The German Signature Act (Signaturgesetz, [SigG]) defines the general framework for so-
called qualified electronic signatures that can be used in legal actions. The SigG has been first
passed in 1997 and has been modified in 2001 to comply with the Directive on Electronic
Signatures of the European Community [ECDir]. The signature law and the ordinance on its
technical realization (Signaturverordnung, [SigV01]) put very strong security requirements on
the entire public key infrastructure providing means for “qualified electronic signatures”, i.e.
on signature devices, signature software as well as CA services. The GISA – German IT
Security Agency (Bundesamt für Sicherheit in der Informationstechnik, BSI) has issued a
“Signature Interoperability Specification” (SigI), promoting uniform signature and certificate
formats for SigG-related applications. Companies providing qualified CA services have
founded the association “T7” and have issued the standard “Industrial Signature
Interoperability Standard” (ISIS), which is an enhancement of a subset of SigI.

The EU-Directive and the German Signature Act classifies electronic signatures as follows:

1. “electronic signature ” means data in electronic form which are attached to or logically
associated with other electronic data and which serve as a method of authentication;

Common PKI Part 9: SigG-Profile Version 2.0

Preface Common PKI Part 9 – Page 6 of 30

2. “advanced electronic signature” means an electronic signature which meets the
following requirements:

(a) it is uniquely linked to the signatory;

(b) it is capable of identifying the signatory;

(c) it is created using means that the signatory can maintain under his sole control; and

(d) it is linked to the data to which it relates in such a manner that any subsequent change
of the data is detectable;

3. “qualified electronic signature” means an advanced electronic signatures which:

(a) is based on a “qualified certificate” that was valid at the time of signature-creation;

(b) was generated by a “secure-signature-creation device”;

Based on MailTrusT (a specification of TeleTrusT for PKI-based secure email), SigI and
ISIS, this Common PKI specification aims to provide a common specification for client
applications that integrate secure email or other functions and qualified (i.e. SigG-
conforming) signature functions. Interoperability among client components as well as CA-
services should be provided regardless of the aspired level of security or trust. This
characteristic is also referred to as vertical interoperability.

More in detail this means:

• components offering the same security level MUST be unconditionally interoperable;

• components offering a different security level must be interoperable as far as possible:
qualified components MUST conform to any lower security levels. For example, certified
client software (implementing a secure “signature-application component” in the sense of
SigG) MUST be able to verify signatures generated by any other Common PKI-compliant
components, where the user must be given a note about the actual assumable level of trust.
Non-certified components are STRONGLY RECOMMENDED to support data structures
(e.g. qualified certificates) and CA services as described in this document. Accordingly,
non-certified client software should be able to verify qualified signatures, where of course,
the verification can be trusted only to the same extent as the client environment can be
trusted.

• Interoperability with common Internet components and data formats based on PKIX
standards is enforced.

• Components that are certified or declared as conforming to the German Signature Law
and related data formats (the subject of this SigG-Profile) are specified in a manner to
meet the requirements of the SigG and of the SigV and to fully comply with the standards
of ETSI (European Communications Standards Institute).

In order to achieve the above interoperability and conformity goals, a special “sub”-profile of
Common PKI for components and services related to qualified signatures will be defined in
this document.

1.2 Requirements on technical components

The SigG and the SigV induces a couple of special requirement on technical components
(especially certificates and directory services) used SigG-conforming services or SigG-related
applications. Among many others, the following requirements apply:

Common PKI Part 9: SigG-Profile Version 2.0

Preface Common PKI Part 9 – Page 7 of 30

(1) the validity time (as indicated by the corresponding X.509 data object) of qualified
certificates is limited to 5 years (SigV §14 (3))

(2) long term verifiability: it must be possible to verify a signature after expiry and even after
revocation of relevant certificates. This period is set at a minimum of 5 years for non-
accredited CAs and at a minimum of 30 years for accredited CAs (SigV §4 (1) and (2))

(3) a flat, 3- layer certification hierarchy for accredited CAs: a governmental agency at the top
level (responsible for policies, accreditation and subsequent supervision), certification
service providers at the middle level (providing CA services for end entities, but not
permitted to issue certificates for other CAs) and end entities at the bottom.

(4) SigG §19 (5): The user certificates issued by a conforming CA remain valid even if the
accreditation of the issuing CA gets revoked. In this case all certificates of the CA must be
revoked.

(5) SigG §8 (1): A back-dated revocation of certificates is forbidden.
(6) SigG §5 (1) distinguishes between confirming the status of certificates from keeping them

accessible for downloading. While a conforming CA is obliged to provide status
information about all certificates, its directory service may only publish a qualified
certificate with the approval of its owner.

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 8 of 30

2 Certificate and CRL Formats

The special requirements on certificate and CRL contents are collected in the following tables. Profiling information on specific data
components are linked via references to corresponding definitions in Part 1. Note that certificate and CRL formats conforming this SigG-Profile
are fully compliant with the more general Common PKI Core profile, laid down in Part 1.

2.1 Public Key Certificate Format

Table 1 : Special requirements on SigG-conforming qualified PKCs

SUPPORT # DATA FIELD SEMANTICS AND SIGG PROFILING INFORMATION
(CONSTRAINT OR ENHANCEMENT WITH RESPECT TO CORE)

CRITI-
CAL GEN PROC

REFE-
RENCE

NO
TES

0 Validity According to the ordinance on signatures [SigV01], §14, the interval defined by the

validity time data field of qualified certificates MUST NOT exceed 5 years.

 ++ ++ P1.T2.#6

 STANDARD EXTENSIONS
1 KeyUsage The following restriction applies in end-entity qualified signature certificates: the

contentCommitment bit and only this bit MUST be set if these certificates are used to
validate commitment to signed content, such as electronic signatures on agreements
and/or transactions. These certificates MUST NOT be used for other purposes, like
authentication or encryption.

++
(RFC
3739
+)

++
(RFC
3739
++)

++
(RFC
n.a.)

P1.T12

2 CertificatePolicies Legacy systems use the CertificatePolicies extension to mark qualified certificates and to
recognize this fact in components.

-
(RFC
5280 +-)

+- ++ P1.T14 [1]

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 9 of 30

3 id-commonpki-cp-accredited The id-commonpki-cp-accredited OID indicates that the certificate is a qualified
certificate according to [EUDIR], which additionally conforms the special requirements
of the SigG and has been issued by an accredited CA. This latter means that the security
of all relevant components (CA, DIR, smartcards etc.) has been proven by an
independent accredited laboratory and provides an appropriately high level of trust
according to ITSEC. The voluntary accreditation process for CAs is described in §15 and
§16 of the novel signature act [SigG] from 2001.
Since many of the currently used QCs do not include a QCStatement, SigG-conforming
components MUST be able to evaluate both the id-commonpki-cp-accredited policy OID
and QCStatements. New qualified certificates MUST be issued with a proper
QCStatement (see #6) and MAY include the id-commonpki-cp-accredited policy OID to
indicate voluntary accreditation of the issuing CA.
Non-accredited CAs issuing SigG-conforming certificates MUST NOT use this OID, but
SHOULD mark the certificate by including a proper policy OID in QCStatements.
ATTENTION! Currently used qualified certificates have been issued including merely
the id-commonpki-cp-accredited policy OID (i.e. no QCStatement present). As voluntary
accreditation of the CA implies that all issued certificates are qualified ones, components
MUST be able to recognize this fact in the absence of a QCStatement.

 +- ++ P1.T14

4 SubjectDirectoryAttributes Qualified PKCs MAY include legal identification data of the subject in the
subjectDirectoryAttributes extension. The same kind of information MAY be included in
attribute certificates as separate attribute (i.e. in the ‘attributes’ field instead of an
extension) but using the same SubjectDirectoryAttributes syntax.
The attributes that can be inserted by compliant CAs MUST be selected from the
following list:
Standard attributes: commonName, surname, givenName, title, postalAddress
 (with the address of permanent residence)
RFC3739 attributes: dateOfBirth, placeOfBirth, gender, countryOfCitizenship,
 countryOfResidence,
Common PKI attribute: nameAtBirth
SigG-conforming components MUST be prepared to process all these DName attribute
types. Clients SHOULD be able to process all these attribute types that may occur in the
subject field.
According to the German law, the following items are required for a legally valid
identification record: surname, givenName, title, dateOfBirth, placeOfBirth,
nameAtBirth, countryOfCitizenship, postalAddress. No attributes have yet been
introduced for further data items of a German ID card, like ID card number, height,
colour of eyes, issuing institution, issuing date.

-- +-

(CORE+)
P9++

P1.T17

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 10 of 30

 RFC3739 (QC)
PRIVATE EXTENSIONS

5 QCStatements QCStatements (Qualified Certificate Statements) extension MUST be recognized and
evaluated by SigG-conforming components.

-
(RFC
3739 +-)

(CORE+-)
P9++

(CORE+)
P9++

P1.T25 [1]

6 id-etsi-qcs-QcCompliance In accordance with [ETSI-QC], qualified certificates to be used in the context of the
signature act (SigG) MUST include a QCStatement (Qualified Certificate Statement)
extension with this OID. This applies to end entity as well as to CA certificates. The
meaning of this OID is that the certificate policy is compliant with the policy described
in [ETSI-POL].
This QC statement was RECOMMENDED to be included in SigG-conforming
certificates issued until June 30, 2005 and it MUST be present in certificates issued later.

 (CORE+)
P9++

(CORE+)
P9++

P1.T25

6a id-etsi-qcs-QcSSCD In accordance with [ETSI-QC], qualified certificates to be used in the context of the
signature act (SigG) MAY include a QCStatement (Qualified Certificate Statement)
extension with this OID. This applies to end entity as well as to CA certificates.
The meaning of this OID is to indicate that the CA warrants that the private key
associated with the public key in the certificate is stored in an SSCD according to Annex
III of [ECDIR].

 +- (CORE+)
P9++

P1.T25

7 id-etsi-qcs-QcLimitValue The QcLimitValue statement SHOULD be used in new certificates in place of the
extension/attribute MonetaryLimit. Nevertheless, MonetaryLimit was allowed until
December 31, 2003. After this date, MonetaryLimit MUST NOT be used any longer. For
the sake of backward compatibility with certificates already in use, components MUST
support MonetaryLimit (as well as QcEuLimitValue).
If both QcEuLimitValue and MonetaryLimit occur in the same certificate, they MUST
assert the same value and currency. A certificate SHOULD use only one form.

 +- (CORE+)
P9++

P1.T25

8 id-etsi-qcs-
QcRetentionPeriod

The QcRetentionPeriod statement indicates CAs or a relevant name registration authority
retains external information (i.e. registration documents) about the owner of qualified
certificates. This information allows identifying the physical person in case of dispute.
SigG-compliant client MUST support this statement.

 +- (CORE+)
P9++

P1.T25

 RFC2560 (OCSP)
PRIVATE EXTENSIONS

9 OCSPNocheck OCSP clients need to know how to check that an authorized OCSP responder’s
certificate has not been revoked. A CA MAY specify that an OCSP client can trust a
responder for the lifetime of the responder’s certificate, i.e. the client need no CRL
information. The CA does so by including the extension OCSPNocheck .
SigG-compliant CAs MUST provide status information on the responder’s certificate.
Hence, this extension MUST NOT be included in qualified certificates.

- (CORE+-)
P9--

+ P1.T26

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 11 of 30

 COMMON PKI SIGG-PROFILE
PRIVATE EXTENSIONS

 [2]

10 LiabilityLimitationFlag Indicates that an attribute certificate exists, which restricts the application of this public
key certificate. Whenever verifying a signature with the help of this certificate, the
content of the corresponding attribute certificate should be concerned.
This extension MUST be included in a PKC, if a corresponding attribute certificate
(having the PKC as base certificate) contains some attribute that restricts the usability of
the PKC too. Attribute certificates with restricting content MUST always be included in
the signed document.

- P9+- P9++ P9.T2 [1]

11 DateOfCertGen The CA MAY include the DateOfCertGen extension, if the certificate is issued right
before its validity period, i.e. the signing time Ts lies before validity.notBefore. Otherwise
the extension SHOULD NOT be included. This information plays a role, if a relying
component decides to validate the certificate according to the SigG-specific validity
model, described in Section 6.
Note that in the context of the SigG Profile, a certificate MUST be considered valid,
despite of a later revocation of the issuing CA's certificate, if the issuing CA's certificate
was valid at the issued certificate's DateOfCertGen time.
Note also that any signature made before the NotBefore time of the corresponding
signature certificate is not valid and does not ever become valid, regardless of a
DateOfCertGen time included in the signature certificate.

-- P9+- P9++ P9.T3

12 Procuration This attribute may also be used as an extension. As an extension it is single-valued.
At the current legal situation, only natural persons and no legal persons (organizations)
may be substituted.

-- P9+- P9++ P1.T29a

13 Admission This attribute may also be used as an extension. -- P9+- P9++ P1.T29b [3]
14 MonetaryLimit The QcEuMonetaryLimit QC statement MUST be used in new certificates in place of the

extension/attribute MonetaryLimit since January 1, 2004. For the sake of backward
compatibility with certificates already in use, SigG conforming components MUST
support MonetaryLimit (as well as QcEuLimitValue).

- P9-- P9++ P1.T29c [1]

15 DeclarationOfMajority This attribute may also be used as an extension. -- P9+- P9++ P1.T29d
16 Restriction This attribute may also be used as an extension. - P9+- P9++ P1.T29e [1]
16a AdditionalInformation This attribute may also be used as an extension. - P9+- P9++ P1.T29f [1]
17 ICCSN Smartcard serial number, to bind a public key to a smart card that stores the

corresponding private key.
-- P9+- P9+- P9.T9

 DNAME ATTRIBUTES
18 nameDistinguisher Legacy systems, software and certificates use this DName attribute in conjunction with

the OID id-commonpki-at-nameDistinguiser to distinguish DNames if different entities,
if their DNames are otherwise identical. [RFC3739] and Common PKI recommends
using the attribute serialNumber for this purpose. For backward compatibility, S

-- -- P9++

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 12 of 30

[1] Notes on criticality:
For the sake of vertical interoperability, these extensions SHOULD NOT be marked critical, in spite of the fact that their contents restrict the usability of the certificate
in some way. As these information are extremely relevant in verifying the legal validity of the signature, SigG-conforming components MUST evaluate them.

[2] All SigG-specific extensions, except ICCSN, MUST be processed by SigG-conforming components.

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 13 of 30

[3] Profession OIDs SHOULD always be defined under the OID branch of the responsible naming authority.
At the time of this writing, the work group “Recht, Wirtschaft, Steuern” (“Law, Economy, Taxes”) is registered as the first naming authority under the OID
id-commonpki-at-namingAuthorities and defined the following profession OIDs:

id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern {id-commonpki-at-namingAuthorities 1}
Rechtsanwältin {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 1}
Rechtsanwalt {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 2}
Rechtsbeistand {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 3}
Steuerberaterin {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 4}
Steuerberater {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 5}
Steuerbevollmächtigte {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 6}
Steuerbevollmächtigter {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 7}
Notarin {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 8}
Notar {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 9}
Notarvertreterin {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 10}
Notarvertreter {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 11}
Notariatsverwalterin {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 12}
Notariatsverwalter {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 13}
Wirtschaftsprüferin {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 14}
Wirtschaftsprüfer {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 15}
Vereidigte Buchprüferin {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 16}
Vereidigter Buchprüfer {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 17}
Patentanwältin {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 18}
Patentanwalt {id-commonpki-at-namingAuthorities-RechtWirtschaftSteuern 19}

See http://www.teletrust.de/fileadmin/files/oid/oid_Antrag.pdf for an application form and http://www.teletrust.de/index.php?id=524for an overview of registered
naming authorities.
However a naming authority is NOT REQUIRED to register under the OID id-commonpki-at-namingAuthorities in order to define profession OIDs.
At the time of this writing, profession OIDs for the German health care system are defined in the OID sub tree under (1 2 276 0 76 4), see
http://www.dimdi.de/dynamic/de/ehealth/oid/verzeichnis.html .
Note that e.g. the profession OIDs Rechtsanwältin and Rechtsanwalt MUST be considered as equal. The same applies to the other OIDs.

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 14 of 30

Table 2: LiabilityLimitationFlag

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki-at-LiabilityLimitationFlag OBJECT IDENTIFIER
 : ::= {0 2 262 1 10 12 0}

OID for extension LiabilityLimitationFlag n.a. P9.T12

2 LiabilityLimitationFlagSyntax ::= BOOLEAN The extension SHOULD only be present, if it
has value true.

P9+- P9++

n.a.

Table 3: DateOfCertGen

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki-at-dateOfCertGen OBJECT IDENTIFIER ::=
 {id-commonpki-at 1}

OID for extension DateOfCertGen n.a. P9.T12

2 DateOfCertGenSyntax ::= GeneralizedTime

Date of the generation of the certificate.
The format YYYYMMDDhhmmssZ MUST
be used.

P9+- P9++ n.a.

Table 4: Obsoleted by Part 1 Table 29a

Table 5: Obsoleted by Part 1 Table 29b

Table 6: Obsoleted by Part 1 Table 29c

Table 7: Obsoleted by Part 1 Table 29d

Table 8: Obsoleted by Part 1 Table 29e

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 15 of 30

Table 9: ICCSN

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki-at-iCSSN OBJECT IDENTIFIER ::= {id-commonpki-at
6}

OID for extension ICCSN n.a. P9.T12

2 ICCSNSyntax ::= OCTET STRING (SIZE(8..20)) Serial number of the smart card containing the
corresponding private key

+- +-

n.a. [1]

[1] COMMON PKI PROFILE: This information may be particularly useful in business applications, where the workflow of issuing a smartcard starts with producing the
card, that will be bound to a person only a later stage. In such applications, the ICCSN can serve as the main reference to the client’s data during the entire life cycle of
the smartcard, e.g. for logging or billing particular transactions carried out by the card holder.

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 16 of 30

2.2 Attribute Certificate Format

Table 10: Special requirements on SigG-conforming qualified attribute certificates

SUPPORT # DATA FIELD SIGG PROFILING INFORMATION
(CONSTRAINT OR ENHANCEMENT WITH RESPECT TO CORE)

CRITICAL
O .MULTI-
VALUED

GEN PROC
REFE-
RENCE

NO
TES

 BASIC AC FIELDS
1 Subject SigG-conforming attribute certificates may exist only in conjunction with a key

certificate (the base certificate) of the subject. Hence, such certificates MUST use
the baseCertificateID option when filling the subject field.

 ++ ++ P1.T28.#3

2 attrCertValidityPeriod According to the ordinance on signatures [SigV01], §7, the validity of an attribute
certificate ends with the validity of the accompanying base certificate. Therefore
the maximum validity period is 5 years.

 ++ ++ P1.T28.#9

 COMMON PKI SIGG-PROFILE
PRIVATE EXTENSIONS

 CRITICAL

3 DateOfCertGen The same applies as to the corresponding PKC extension. See T1.#11 -- P9+- P9++

T1.#11,
P9.T3

 COMMON PKI
PRIVATE ATTRIBUTES

 MULTI-
VALUED

4 Procuration The same applies as to the corresponding PKC extension. See T1.#12 Y +- (CORE +-)
P9++

T1.#12,
P1.T29a

5 Admission The same applies as to the corresponding PKC extension. See T1.#13 N +- (CORE +-)
P9++

T1.#13,
P1.T29b

6 MonetaryLimit The same applies as to the corresponding PKC extension. See T1.#14 N -- (CORE +-)
P9++

T1.#14,
P1.T29c

[1]

7 DeclarationOfMajority The same applies as to the corresponding PKC extension. See T1.#15 N +- (CORE +-)
P9++

T1.#15,
P1.T29d

8 Restriction The same applies as to the corresponding PKC extension. See T1.#16 Y +- (CORE +-)
P9++

T1.#11,
P1.T29e

[1]

8a AdditionalInformation The same applies as to the corresponding PKC extension. See T1.#16a Y +- (CORE +-)
P9++

T1.#11,
P1.T29f

[1]

9 SubjectDirectoryAttributes The same applies as to the corresponding PKC extension. See T1.#4 N +- (CORE +-)
P9++

T1.#4
P1.T17

10 QcEuLimitValue
id-etsi-qcs-QcLimitValue

This attribute MUST be processed by conforming applications. N +- (CORE +-)
P9++

P1.T25
.#13

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 17 of 30

[1] SIGG-PROFILE: In conjunction with setting the LiabilityLimitationFlag in the base certificate, this specification allows issuing attribute certificates that restrict the
usability of the base certificate.

2.3 CRL Format

Table 11: Special requirements on CRLs of SigG-conforming qualified certificates

SUPPORT # DATA FIELD SIGG PROFILING INFORMATION
(CONSTRAINT OR ENHANCEMENT WITH RESPECT TO CORE)

CRITI-
CAL CA CLIENT

REFE-
RENCE

NO
TES

 CRL ENTRY EXTENSIONS
1 CRLReason Only the reason codes keyCompromise, cACompromise, affiliationChanged,

cessationOfOperation are allowed. As revoked SigG-conforming certificates cannot
be released again, the reasons certificateHold and removeFromCRL never apply.

-- +-

+-

P1.T38

2 HoldInstruction As SigG-conforming certificates MUST NOT be suspended (status certificateHold)
in directories, this extension MUST NOT occur in CRL entries corresponding to
such certificates.

-- (CORE+-)
P9--

+-

P1.T39

Common PKI Part 9: SigG-Profile Version 2.0

Certificate and CRL Formats Common PKI Part 9 – Page 18 of 30

2.4 Common PKI Object Identifiers

The following table lists all ASN.1 object identifiers introduced in the Common PKI Specification Core and in this SigG-Profile. Furthermore,
obsolete OIDs, defined in [ISIS] or earlier Common PKI versions, are listed too. These OID values are reserved and MUST NOT be used for
any other purpose. The id-commonpki branch of the OID tree was previously known under the name id-isismtt and before that under the
name id-sigi, the name but not the meaning has been changed in this version.

Table 12: Common PKI Object Identifiers

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC CO . PKI

NO
TES

1 id-commonpki OBJECT IDENTIFIER ::= {1 3 36 8 } ++ ++ n.a.
2 id-commonpki-cp OBJECT IDENTIFIER ::= {id-commonpki 1} Branch for policies n.a. #1
3 id-commonpki-cp-accredited OBJECT IDENTIFIER ::= {id-commonpki-cp 1} +- ++ n.a. #2
4 id-commonpki-at OBJECT IDENTIFIER ::= {id-commonpki 3} Branch for attributess

and extensions
 n.a. #1

4 id-commonpki-at-dateOfCertGen OBJECT IDENTIFIER ::= {id-commonpki-at 1} +- ++ n.a. P9.T3
5 id-commonpki-at-procuration OBJECT IDENTIFIER ::= {id-commonpki-at 2} +- ++ n.a. P1.T29a
6 id-commonpki-at-admission OBJECT IDENTIFIER ::= {id-commonpki-at 3} +- ++ n.a. P1.T29b
7 id-commonpki-at-monetaryLimit OBJECT IDENTIFIER ::= {id-commonpki-at 4} +- ++ n.a. P1.T29c
8 id-commonpki-at-declarationOfMajority OBJECT IDENTIFIER ::= {id-commonpki-at 5} +- ++ n.a. P1.T29d
9 id-commonpki-at-iCSSN OBJECT IDENTIFIER ::= {id-commonpki-at 6} +- ++ n.a. P9.T9
10 id-commonpki-at-pKReference OBJECT IDENTIFIER ::= {id-commonpki-at 7} obsolete -- - n.a. obsolete
11 id-commonpki-at-restriction OBJECT IDENTIFIER ::= {id-commonpki-at 8} +- ++ n.a. P1.T29e
12 id-commonpki-at-retrieveIfAllowed OBJECT IDENTIFIER ::= {id-commonpki-at 9} CORE--

P9+-
- n.a. P9.T15

13 id-commonpki-at-requestedCertificate OBJECT IDENTIFIER ::= {id-commonpki-at 10} CORE --
P9+-

- n.a. P9.T16

14 id-commonpki-at-namingAuthorities OBJECT IDENTIFIER ::= {id-commonpki-at 11} +- ++ n.a. P1.T29b
16 id-commonpki-at-certHash OBJECT IDENTIFIER ::= {id-commonpki-at 13} ++ ++ n.a. P4.T15
17 id-commonpki-at-nameAtBirth OBJECT IDENTIFIER ::= {id-commonpki-at 14} +- ++ n.a. P1.T7
17a id-commonpki-at-additionalInformation OBJECT IDENTIFIER ::= {id-commonpki-at 15} +- ++ n.a. P1.T29f
18 id-commonpki-at-liabilityLimitationFlag OBJECT IDENTIFIER ::= {0 2 262 1 10 12 0} +- ++ n.a. P9.T2
19 id-commonpki-at-nameDistinguisher OBJECT IDENTIFIER ::= {0 2 262 1 10 7 20} obsolete, backward

compatibility!
-- ++ n.a. T1.#18

Common PKI Part 9: SigG-Profile Version 2.0

LDAP Common PKI Part 9 – Page 19 of 30

3 LDAP

Common PKI-compliant certification authorities MUST publish end entity and CA
certificates. It is RECOMMENDED that certificates are downloadable from an LDAP server.
No specific requirements apply for SigG-conforming systems and thus no profiling
information is added here with respect to the Core Document Part 4.

Common PKI Part 9: SigG-Profile Version 2.0

OCSP Common PKI Part 9 – Page 20 of 30

4 OCSP

For SigG-conforming applications, the primary means of providing and obtaining revocation
status information is declared by this profile to be OCSP. CSPs that are accredited according
to the German Signature Law MUST provide an OCSP service, other CSPs MAY choose to
provide one.

For the sake of long term validation (Requirement (2) of Section 1.2), SigG-conforming
directories MUST retain status information for a so called retention period of time after the
end of the expiry year. The retention period is as long as 5 years for non-accredited CSPs and
30 years for accredited ones. Certificates MAY include the RetentionPeriod extension.
Certificates MUST be kept in the directory for this period and OCSP responders MUST be
able to deliver status information after the expiry of certificates. For the same reason, this
profile RECOMMENDS against deleting revoked certificates from CRLs, which is common
practice. The means for downloading certificates SHOULD be LDAP.

If requesting status information from a standard OCSP responder beyond the retention period,
standard OCSP products may deliver the response ‘good’ (indicating a positive response to
the status inquiry and meaning at minimum ‘not known to be revoked’ according to
[RFC2560]). This may falsely lead to successful validation of a certificate. It is therefore
crucial that the directory service of a CA is able to send a ‘positive statement of availability’
to the clients, indicating that the requested certificate is kept in the queried directory and the
revocation information is thus reliable (i.e. help the client to be able to interpret ‘good’ as
‘certificate is known to the responder and has certainly not been revoked’). Each OCSP
response given for SigG-conforming signature certificates MUST contain such a positive
statement in form of the CertHash extension.

Additionally, the retention period MAY be explicitly sent in the response, so that clients,
querying the status of a certificate beyond the retention period, can detect that status
information is no longer available. OCSP responders MAY send this information in a
ArchiveCutoff extension of the response.

Relying components MUST be able to interpret the positive statement and the retention
information and MUST involve them in the signature validation process.

Common PKI Part 9: SigG-Profile Version 2.0

OCSP Common PKI Part 9 – Page 21 of 30

Table 13: Special requirements on OCSP protocol elements

SUPPORT # DATA FIELD PROFILING INFORMATION
(CONSTRAINT OR ENHANCEMENT WITH RESPECT TO COMMON PKI)

CRITI-
CAL GEN PROC

REFE-
RENCE

NO
TES

 BASIC OCSPRESPONSE FIELDS
1 signature [RFC2560]: All definitive response messages (responseStatus=successful) MUST

be digitally signed. The key used to sign the response MUST belong to one of the
following:
(a) the CA who issued the certificate(s) in question
(b) a Trusted Responder whose public key is trusted by the responder (and

installed directly at the client), affected certificates include the OCSPNocheck
extension (see Table 1.#5)

(c) a CA Designated Responder (Authorized Responder) who holds a specially
marked certificate issued directly by the CA, indicating in the
ExtendedKeyUsage extension that the responder may issue OCSP responses for
that CA.

[RFC2560]: The above list is extended with the following option:
(d) a key associated with the CA (i.e. a CA's ‘OCSP Signing’ key)
COMMON PKI PROFILE: As described in (d) above, the responder’s certificate
MAY be issued for the CA by some other trusted authority. This set-up allows
relying components to obtain reliable status information even if the key of the
issuing CA has been compromised.
SigG-conforming accredited CAs MUST obtain responder certificates from the
German Federal Network Agency for Electricity, Gas, Telecommunications, Post
and Railway (BNetzA), which contains an ‘OCSP signing’ key.
ATTENTION! Currently, the certificates issued by the BNetzA for OCSP
responders are marked with the CRLSign-bit in the KeyUsage extension, whereas
the ExtKeyUsage extension is not included. Clients MUST temporarily accept this
kind of flagging as authorization for OCSP signing.

 ++ ++ P4.T8.#5

2 CertStatus ‘good’ [RFC2560]: ATTENTION! As status information delivered by OCSP may be
obtained from CRLs, ‘good’ does not necessarily mean that the certificate was ever
issued or that the response time lies within the certificate’s validity interval.
Additional information regarding the status, such as positive statement about
issuance, validity, may be included in response extensions.
SigG-conforming CAs MUST provide positive statement about the issuance of a
certificate. This Common PKI Specification provides means for that by defining the
private single response extension CertHash . See also #4.

 P4.T8.#24

Common PKI Part 9: SigG-Profile Version 2.0

OCSP Common PKI Part 9 – Page 22 of 30

 RFC 2560 EXTENSIONS
3 ArchiveCutoff extension in ResponseData: a responder MAY choose to retain revocation

information beyond the certificate’s expiry date. In this case, the responder
SHOULD include the certificate’s “cutoff” date, which is obtained by subtracting
the retention period from the producedAt time.
According to the SigG, compliant directory services are obliged to retain
information for a period of 30 years in accredited directories and respectively for 7
years in non-accredited ones. The ArchiveCutoff extension with appropriate content
SHOULD be present, independent of whether CertHash is present or not.

-- +

++
(RFC+-)

P4.T13

 COMMON PKI SIGG-PROFILE
PRIVATE EXTENSIONS

4 CertHash (Positive Statement) SingleResponse extension: the responder may include this extension in a response
to send the hash of the requested certificate to the requestor. This hash serves as
evidence that the certificate is known to the responder (i.e. it has been issued) and
will be used as means to provide a ‘positive statement on issuance’.
According to the SigG (§ 5 (1)), compliant directory services MUST provide
positive statement about the issuance of signature certificates. Hence, SigG-
compliant responders MUST always include this extension in single responses.

-- (CORE+-)
P9++

++

P4.T15

5 RetrieveIfAllowed (Single)Request extension: Clients may include this extension in a (single) Request
to request the responder to send the certificate in the response message along with
the status information. Besides the LDAP service, this extension provides another
mechanism for the distribution of certificates, which MAY optionally by provided
by certificate repositories.

-- (CORE--)
P9+-

+- T15

6 RequestedCertificate SingleOCSPResponse extension: The certificate requested by the client by inserting
the RetrieveIfAllowed extension in the request, will be returned in this extension.
The SigG allows publishing certificates only then, when the certificate owner gives
his explicit permission. Accordingly, there may be ‘non-downloadable’ certificates,
about which the responder must provide status information, but MUST NOT
include in the response. Clients may get therefore the following three kind of
answers on a single request including the RetrieveIfAllowed extension:
(a) the responder supports the extension and is allowed to publish the certificate:

RequestedCertificate returned including the requested certificate
(b) the responder supports the extension but is NOT allowed to publish the

certificate: RequestedCertificate returned including an empty OCTET STRING
(c) the responder does not support the extension: RequestedCertificate is not

included in the response
Clients requesting RetrieveIfAllowed MUST be able to handle these cases.

-- (CORE--)
P9+-

+- T16

Common PKI Part 9: SigG-Profile Version 2.0

OCSP Common PKI Part 9 – Page 23 of 30

Table 14: RetrieveIfAllowed

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 CO . PKI

NO
TES

1 id-commonpki-at-retrieveIfAllowed OBJECT IDENTIFIER ::= {1 3 36 8 3 9}
2 RetrieveIfAllowed ::= BOOLEAN +- +- [1]

[1] Clients may include this extension in a (single) Request to request the responder to send the certificate in the response message along with the status information.
Besides the mandatory LDAP service, this extension provides another mechanism for the distribution of certificates, which MAY optionally by provided by certificate
repositories.

Table 15: RequestedCertificate

SUPPORT REFERENCES # ASN.1 DEFINITION SEMANTICS
GEN PROC RFC2560 CO . PKI

NO
TES

1 id-commonpki-at-requestedCertificate OBJECT IDENTIFIER ::=
 {1 3 36 8 3 10}

2 RequestedCertificate ::= CHOICE {
 Certificate Certificate,
 publicKeyCertificate [0] EXPLICIT OCTET STRING,
 attributeCertificate [1] EXPLICIT OCTET STRING }

 +- +- [1]

[1] The certificate requested by the client by inserting the RetrieveIfAllowed extension in the request, will be returned in this extension.
The signature act allows publishing certificates only then, when the certificate owner gives his explicit permission. Accordingly, there may be ‘non- downloadable’
certificates, about which the responder must provide status information, but MUST NOT include them in the response. Clients may get therefore the following three
kind of answers on a single request including the RetrieveIfAllowed extension:

a) the responder supports the extension and is allowed to publish the certificate: RequestedCertificate returned including the requested certificate
b) the responder supports the extension but is NOT allowed to publish the certificate: RequestedCertificate returned including an empty OCTET STRING
c) the responder does not support the extension: RequestedCertificate is not included in the response

Clients requesting RetrieveIfAllowed MUST be able to handle these cases.
If any of the OCTET STRING options is used, it MUST contain the DER encoding of the requested certificate.

Common PKI Part 9: SigG-Profile Version 2.0

TSP Common PKI Part 9 – Page 24 of 30

5 TSP

SigG-conforming certification authorities MAY offer time-stamping services. For the sake of
interoperability, Common PKI specifies a time stamp protocol (TSP) to acquire and obtain
time stamp from a server. This protocol is fully compatible with the one defined in the PKIX
standard [RFC3161]. No profiling information with respect to the Common PKI Core
Document Part 4 is added here for SigG-conforming applications.

Common PKI Part 9: SigG-Profile Version 2.0

Certificate Path Validation Common PKI Part 9 – Page 25 of 30

6 Certificate Path Validation

Part 5 of the Common PKI Specification describes a certificate path validation algorithm that
complies with [RFC5280] and the validity implied by that PKIX profile. This model allows
verifying long term signatures, even after the validity period respectively after the revocation
of a signature certificate. This situation is illustrated in Figure 1. If a relying user wants to
validate a signature at Tval, he/she/it must mathematically verify the signature over the
document using the public key in the certificate of the signer and check whether this
certificate and all certificates of its path were valid at the time Tsig of signing the document.

Cert. of Level 1 CA

Cert. of Level 2 CA

User Cert. Tb,u

Tb,ca2

Tb,ca1 Te,ca1

Te,ca2 (Te,ca1)

Te,u (Te,ca2)

Tsig

≤

≤

time

Signed document Tsig

Tsig,max Tval

valid?

YES

go

go

Figure 1: Successful validation of a signature according to the PKIX model

If a CA certificate in the path of the signing certificate has been revoked before the signing
time Tsig, the signature is considered to be invalid in the PKIX model, as depicted in Figure 2.
This also means that the latest time Tsig,max a user can provide a valid signature is the of the
revocation time Trev,ca2 of the CA certificate in the path. After this time the user cannot
generate valid signatures with its private key in conjunction with this user certificate, even if
the certificate was not explicitly revoked.

Cert. of Level 1 CA

Cert. of Level 2 CA

User Cert. Tb,u

Tb,ca2

Tb,ca1 Te,ca1

Te,ca2 (Te,ca1)

Te,u (Te,ca2)

Tsig

≤

≤

time

Signed document Tsig

Tsig,max Tval

valid?

NOTrev,ca2

go

Figure 2: Signatures created after a revocation are invalid in the PKIX model

This PKIX validity model is used throughout Part 1 to 8 of Common PKI. There are however
interpretations of the validity and invalidity of signatures and certificates that differ from this
notion. Notably, the SigG raises a different requirement in §19 (5), saying:
“§ 19: Supervision Measures …

(5) The validity of qualified certificates issued by a certification service provider shall not be
affected by a ban on his operations and cessation of operations or by withdrawal and
revocation of an accreditation.” (unofficial translation, by courtesy of BnetzA)

Common PKI Part 9: SigG-Profile Version 2.0

Certificate Path Validation Common PKI Part 9 – Page 26 of 30

Well, there have been disputes for a long time, what the purpose of this clause could be and
whether the legislator actually meant the validity of the signature (not the certificate) to
remain unaffected after cessation of the CSP, in which case the PKIX model would exactly fit
the legal requirements. Compared with the current formulation of §19 (5), the PKIX model is
too restrictive: in case of cessation of a CSP it delivers a negative technical judgement for a
signature that is valid in the juridical sense. CSPs MAY take this into account and promote
the PKIX model to be used in conjunction with their certificates. The reverse situation, i.e.
interpreting a legally valid signature as technically invalid, can never occur.
Note furthermore, that if the CSP commits itself to a policy of revoking all user certificates
before its own certificate gets revoked, the situation can never occur and the PKIX model
always delivers a technical judgement of validity which is identical with the juridical one. It is
being discussed whether such a revocation policy should be seen as an infringement of the
law.
In the current vague situation, CSPs wanting to provide technical products that exactly fulfil
the validity requirements of the SigG, MAY implement a slightly different variant of the
PKIX model, called here the SigG-model. According to this model, validation follows exactly
the “normal way” induced by the PKIX model and delivers the same results in the normal
case. If, however, the relying component detects that the certificate of the CA that issued the
user’s signing certificate was revoked before the signing time Tsig, it shall not to cease with
negative result, but try to validate the CA certificate with respect to the issuing time Tb,u of the
user’s certificate. If it succeeds with this, the user’s certificate shall be considered valid. This
procedure is illustrated in Figure 3. If the time of issuance is different from the beginning of
the validity period (e.g. a certificate is issued with validity period in the future), the issuance
time SHOULD be indicated in a DateOfCertGen extension of the user certificate. Note that
signatures made before the NotBefore time of the corresponding signature certificate are not
valid according to the Signature Law, regardless of a DateOfCertGen time included in the
signature certificate.

Note that the “escape route” can only be taken, if the secret key of the CSP has not be
compromised, but revoked for some other reason, which does not affect the reliability of the
issued certificates. If the reason of revocation cannot be reliably determined, the component
SHOULD consider the signature to be invalid.

Cert. of Level 1 CA

Cert. of Level 2 CA

User Cert. Tb,u

Tb,ca2

Tb,ca1 Te,ca1

Te,ca2 (Te,ca1)

Te,u (Te,ca2)

Tsig

≤

≤

time

Signed document Tsig

Tsig,max Tval

valid?

YES

Trev,ca2 stop

go

go

Figure 3: Signatures created after cessation of a CA are valid in the SigG model

In the following, we give a formal description of a path validation algorithm that implements
the SigG-model. The algorithm is almost identical with the one specified in Section 2.2 of
Part 5. Actually, one single step of the ValidateCertPath() function, namely Step #12 of
P5.T4, needs to be altered to adopt the algorithm to the SigG-model. The description of this
step is given in Table 16, using the same tabular form and notation as in Part 5.

Common PKI Part 9: SigG-Profile Version 2.0

Certificate Path Validation Common PKI Part 9 – Page 27 of 30

Table 16: ValidateCertPath()

PSEUDO -CODE COMMENTS REF. TO
PART 4

NO
TES

1 if(CheckRevocationStatus(tbvCert,
 tbvCerts,
 refTime,
 pathConstraints,
 trustedCerts,
 trustedCrls)==false)
 {
 if((tbvCert.certType==SelfIssuedCACert ||
 tbvCert.certType==CACert ||
 tbvCert.certType==CrossCACert) &&
 (tbvCert.revoked==true) &&
 (tbvCert.revocationReason!=’keyCompromise’ &&
 tbvCert.revocationReason!=’cACompromise’))
 {
 Certificate &eeCert = tbvCertPath.GetItem(n);

 Time eeCertSigningTime;
 if(eeCert.ContainsDateOfCertGen())
 eeCertSigningTime = eeCert.GetDateOfCertGen();
 else
 eeCertSigningTime = eeCert.GetValidityNotBefore();

 if(CheckRevocationStatus(tbvCert,
 tbvCerts,
 eeCertSigningTime,
 pathConstraints,
 trustedCerts,
 trustedCrls)==false)
 return false;
 }
 else
 return false;
 }

Step #14 of P5.T4 MAY be replaced by the one here, if the certificate path
tbvCertPath should be validated according to the SigG-model.
If CheckRevocationStatus() returns false, this indicates that either the
certificate was revoked before refTime or no status information could be
obtained. Instead of ceasing path validation immediately, as the basic path
validation algorithm of [RFC 5280] does, this algorithm variant checks,
whether:

- the certificate is a CA certificate or a cross certificate and
- it was revoked and
- the revocation reason was not keyCompromise nor cACompromise

If these conditions are met, the algorithm takes the “escape route” by
calling CheckRevocationStatus() again with the time instance parameter
changed from refTime to the signing time of the EE certificate, which is
the last element of tbvCertPath.
If any of the above conditions is not met, the function returns false, as the
original algorithm.
COMMON PKI PROFILE: If during the revocation of a certificate a key
compromise cannot be excluded with sufficient probability, the CA
SHALL set the reason code to keyCompromise or cACompromise. Hence
the reason code unspecified MAY be treated as “unknown, but no key
compromise”.

P4.T5.#12

SigG-conforming applications that support revocation checking by CRL as alternative to OCSP MUST be able to process indirect CRLs.
In the context of SigG the DName of a CRL-issuer registered in the CRLDistributionPoints extension of a certificate changes over time. In this
case the CRL is signed by a different CRL-issuer than the one registered in the CRLDistributionPoints extension at the time of certification. If a
client conforming to this profile (and optional a non-SigG client) downloads the CRL from the CDP URI and encounters this situation, it

Common PKI Part 9: SigG-Profile Version 2.0

Certificate Path Validation Common PKI Part 9 – Page 28 of 30

SHOULD check if the (valid, see also P1.T12.[1]) CRL-issuer, which signed the CRL, can be validated to the same root CA as the certificate
being checked. If this is true, then the CRL SHOULD be considered as if it were signed by the original CRL-issuer.
This provision is an extension of the algorithm specified in Section 2.3 of Part 5, in particular step #4 of the CheckStatusUsingCRL() function in
P5.T6. The modification of this step is given in Table 17, using the same tabular form and notation as in Part 5.

Table 17: CheckStatusUsingCRL()

PSEUDO -CODE COMMENTS NO
TES

1 Name crlIssuerDName;
 if(crlIsIndirect)
 crlIssuerDName = cdp.crlIssuer.GetDirectoryName();
 else
 crlIssuerDName = tbvCert.GetIssuerDName();

The DName of the CRL-issuer is determined.
COMMON PKI PROFILE: Note that the CDP MUST contain the DName of the issuer of
each indirect CRL (P1.T22.#5 & [5]). For indirect CRLs, other CRL-issuer DNames
SHOULD also be acceptable, provided there is a matching CRL-signing certificate that
can be validated to the same root CA as tbvCert.

Other applications MAY adopt this behaviour when evaluating indirect CRLs.

Common PKI Part 9: SigG-Profile Version 2.0

Algorithms Common PKI Part 9 – Page 29 of 30

7 Algorithms

This RIPEMD-160 hash algorithm is published in [BNetzA08] as an algorithm appropriate
and allowed for signing according to the German law on digital signatures [SigG01]. It has
also been used in certificates of the Federal Network Agency for Electricity, Gas,
Telecommunications, Post and Railway (BNetzA). Hence it is urgently RECOMMENDED
that components compliant with this profile accept data elements signed using RIPEMD-160
as a hash function.

Common PKI Part 9: SigG-Profile Version 2.0

References Common PKI Part 9 – Page 30 of 30

References

[BNetzA08] Federal Network Agency for Electricity, Gas, Telecommunications, Post
and Railway: Notification in Accordance with the Electronic Signatures
Act and the Electronic Signatures Ordinance (Overview of Suitable
Algorithms), published in German Federal Gazette (Bundesanze iger) No
19, pp 376 of 5 February 2008 (in German)

[DraftOCSPv2] Online Certificate Status Protocol, version 2, draft-ietf-pkix-ocspv2-02.txt,
March 2001

[ECDIR] Directive 1999/93/EC of the European Parliament and of the Council of 13
December 1999 on a Community Framework for Electronic Signatures

[ETSI-CPN] ETSI TS 102 280 v1.1.1 (2004-03) : X.509 V.3 Certificate Profile for
Certificates Issued to Natural Persons

[ETSI-POL] ETSI TS 101 456 v1.4.3 (2007-05): Policy Requirements for Certification
Authorities Issuing Qualified Certificates, Technical Specification

[ETSI-QC] ETSI TS 101 862 v1.3.3 (2006-01): Qualified Certificate profile
[ETSI-SIG] ETSI ES 201 733 v1.1.3 (2000-05): Electronic Signature Format

[ISIS] Industrial Signature Interoperability Specification ISIS, Version 1.2,
December 1999, T7 i.Gr., www.t7- isis.de

[RFC2560] X.509 Internet Public Key Infrastructure Online Certificate Status Protocol
-OCSP, June 1999

[RFC3039] Internet X.509 Public Key Infrastructure Qualified Certificates Profile,
January 2001

[RFC3161] Internet X.509 Public Key Infrastructure - Time Stamp Protocol (TSP),
RFC 3161, August 2001

[RFC3281] An Internet Attribute Certificate Profile for Authorization, April 2002
[RFC3739] Internet X.509 Public Key Infrastructure: Qualified Certificates Profile,

March 2004
[RFC5280] Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile, May 2008
[SigG01] Law on the Conditions for Electronic Signatures (Gesetz über

Rahmenbedingungen für elektornische Signaturen und zur Änderung
weiterer Vorschriften), Bundesgesetzblatt Nr. 22, 2001, S.876.

[SigV01] Ordinance on Digital Signatures (Verordnung zur digitalen Signatur –
SigV), 2001

